
7A-A166 353 JOINT PROORAON RPID PROTOTYPING 
RPIER (RPID rlr4PROTOTYPING TO INVESTIGA .(U) HONEYNELL INC GOLDEN

VALLEY MN COMPUTER SCIENCES CENTER 28 MAR 85
UNCL ASSIFIED N5- -9666 66F/O9/2 NL

Eh01hE01E



- L32

lii'

mii 0 I IL a

111 12.0

liii I1.25 11.6

MICROCOPY RESO' ITION TEST CHART

---------- -



SFinal Scientific Report to the* g Office of Naval Research

( Joint Program on Rapid Prototyping

RaPIER (Rapid Prototyping to Investigate End-user Requirements)

Contract No. N0001445 06
28 March 1986

RaPIER "TIC
ZLECTE

*APR70 psD?
8 - .7 00....

L U _ _ _ _ _ _ _ _ _ _ _ H o ne y w ell
tL,.. _,, ~ Computer Sciences Center

_________________1000 Boone Ave. North
Golden Valley, Minneot 55427

~86 3 27 009 ,

t • r - .- . - - " • =-= ' "' ' . . . . .e- -



Final Scientific Report to the
Office of Naval Research

Joint Program on Rapid Prototyping
RaPIER (Rapid Prototyping to Investigate End-user Requirements)

~ Contract No. NO0014-85-C-0666
* 28 March 1986

Honeywell~~~.~ CoptrSiec3Cne

1000~~~. Bon vnu ot

Goldn ValeyMinn~ota5542

V--

r v A



-. - - -- -- -- °-

EXECUTIVE SUMMARY

Traditional requirements definition methods consistently fail to produce
requirements from which satisfactory systems can be designed and built. The

RaPIER project believes that rapidly built prototypes which model critical
system requirements can lead to early consensus on requirements that are
acceptable to customers and feasible to implement. The project's goals are

o to define a methodology for prototype construction and for using prototypes
to investigate end-user requirements;

o to develop a prototype of a software engineering environment that supports
end-user requirements prototyping

The environment will be based on the methodology and contain tools that
-. support, encourage and/or enforce It. The RaPIER approach is to build

prototypes from reusable Ada software parts stored in a software database, and
to express them in a very high level language that specifies how the parts are
tailored and interconnected to form a complete prototype.

This report presents the results of a one year ONR and internally funded
*-"." investigation done to lay the technical and methodological foundations for

developing and transferring the prototype of the RaPIER prototype engineering
environment. The report covers work in:

o Prototyping Methodology. Constraints which prototypes and the prototyping
process must meet, a prototyping life cycle, an object-oriented prototype
construction technique and a model of computation for object-oriented

". *.. prototypes.

o Software Database Management Systems. Requirements for a software base to
manage reusable Ada code and companion material such as documentation and a
scheme for classifying reusable parts based on logical behavior rather then
physical code.

. o Ada Source Code Reusability. Characteristics which reusable Ada code must
display and guidelines for achieving those characteristics.

o Fragment Generation. An assessment of the applicability of current program
transformation technology to RaPIER.

o Research/Demonstration Examples. Descriptions of two example prototypes
built using RaPIER methodology and lessons learned from these exercises.

o RaPIER System Requirements. Initial requirements for the RaPIER prototype
engineering environment and a critique of the requirements based on lessons
learned from the research example prototypes.

4.

The RaPIER project team has had much help and encouragement. Our coworkers at
Honeywell's Computer Sciences Center are always willing to listen to our ideas
and criticize them in depth. Our manager understands the exploratory nature

Honeywell Computer Sciences Center i
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of research and the necessity of changing course to follow up promising
technical results. Honeywell divisional engineers keep us constantly aware of
their "real world" needs and how the RaPIER environment should meet them.
Honeywell divisions provided our research examples. International Software
Systems Inc. has contributed to our understanding of the capabilities of
software base management systems and very high level languages for developing
software from reusable parts. The text processing tools used to produce this
report are due in large part to George Jelatis of the Computer Sciences
Center. The RaPIER team is particularly grateful for the constant encourage-
ment of Ms. Elizabeth (Bets) Wald of the Naval Research Laboratory, Technical
Director of the STARS Application Area. The final responsibility for the
quality of this work lies with the RaPIER team: Elaine N. Frankowski

* (Project Leader), Curtis L. Abraham, James Grindeland, Lai King Mau, Emmanuel :
Onuegbe, Richard St. Dennis, and Paul Stachour.
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Introduction

SECTION 1

INTRODUCTION

This report presents the results of work performed between July 1, 1985 and
' January 31, 1986 with Office of Naval Research nd uer CogsL ac3

N04OO -8-C-O i6, and of parallel, internally funded-work- -pearuind-by the
Honeywell Computer Sciences Center. between January 2, 1985 and January 31,
1986. These results, and results obtained in the next several years, will be
applied by the RaPIER (Rapid Prototyping to Investigate End-user Requirements)
project in developing a software engineering environmentJ4-Q to support
prototyping for investigating end-user requirements. The environment supports
a prototyping methodology, by which we mean Iia collection of techniques,
121-.a prescribed order for applying the techniques, and 1-3L reasons for the

' techniques and their order of application. The RaPIER methodology will
eventually contain techniques for each phase in the prototyping life cycle and
for the transitions between phases. The RaPIER environment will contain
software tools that support, encourage, and/or enforce these procedures and

I techniques.

1.1 THE PROBLEM

I ~ Requirements for computer systems and software are now established early in
. the development life cycle with documents and reviews. A product that meets

those requirements is then developed. The three major problems with this
- .paradigm are:

o changes to vague requirements occur later in the development cycle,
j - necessitating expensive redevelopment;

o missing or incorrect requirements are uncovered after requirements have
been accepted, necessitating expensive redesign or reprogramming;

o users are often subjectively dissatisfied with the final product, therefore
that product does not entirely meet the need it was intended to meet.

- (1) A software engineering environment is a collection of tools that is
integrated in two respects: it presents users with a uniform access
paradigm to all tools and allows the tools to exchange information without
requiring users to take explicit action to translate that information.
The RaPIER environment is also integrated with respect to a methodology;

all of its tools support a single methodology.

Honeywell Computer Sciences Center 1
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A vehicle is needed to {Il eliminate vagueness in requirements, {21 uncover -.
missing or incorrect requirements, and {3} get at users' subjective needs, by
providing some model of initial requirements that can be criticized during the P 7
requirements definition phase of development.

The requirements investigation problem is especially acute in the DoD contrac- "
tor community because of the high cost of mission critical software and
because much software is developed for state-of-the-art systems with which -

neither developers nor customers have prior experience to guide requirements
development (STARS83].

1.2 THE GOALS |

We believe that a prototype(1) of (parts of) a system under development is an
excellect vehicle for achieving an early consensus on requirements. There-
fore, one of RaPIER's goals is to develop a prototype engineering environment.
The environment will provide tools and techniques for developing modifiable
prototypes quickly and inexpensively, and other tools and techniques for using -

prototypes in a systematic way. With such an environment, developers can
build prototypes which make requirements visible and subject to investigation -.

early in the product development life cycle. Domain, or application area,
experts can then conduct experiments with the prototype in order to investi-
gate requirements.

A second and equally important goal is to ensure transfer of the RaPIER
environment from sheltered research surroundings to the production milieu. It
is generally acknowledged that the software engineering community has major
technology transfer problems [IEEE83]. They range from the lack of a
well-defined engineering process to absorb new technology (MANLEY83], to a
lack of understanding of "the human element in the software engineering 1-
equation" [PETERS83]. An important step in reducing the technology transfer
problem for the RaPIER environment is to acknowledge the problem "up front,"
so that the solutions we devise or adopt are an organic part of the project
rather than band-aids applied after the environment and methodology have been
developed.

These goals are based on two assumptions: [I1 prototyping will achieve faster

consensus on requirements than is achieved using traditional means such as
requirements reviews, and [2} systems built according to requirements reached
through prototyping will meet users' needs better than systems developed from

(1) There are two views of prototypes for requirements investigation: that
they are (11 working models of functional behavior used for communication
between developers and domain experts, or {2} breadboard systems used for
design analysis that leads to understanding performance and resource
requirements. The RaPIER prototype engineering environment will be used
to develop the former.

2 March 1986
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Introduction

requirements obtained by traditional means. The assumptions are supported by
experience in other engineering disciplines such as electrical engineering,
and by [SEN82, SHEIL83].

* 1.3 THE APPROACH

I ~e Prototypes must be built quickly to be available during requirements analysis.
They must be relatively inexpensive to build because a development program
will not bear a high initial cost for requirements identification [GOKAA81] no

. matter how large the promised cost savings during system development and
maintenance. They must be used efficiently and systematically, to ensure that
the requirements questions under study are answered at reasonable cost and in
a timely manner. Prototypes must also be modifiable, since prototype use will
inevitably lead to changes until users agree that the prototype represents the
"right" requirements.

To achieve speed, low cost, and modifiability, we propose that prototypes be
ik built from reusable software parts (source code). The reusable parts will

most likely be written in Ada. Prototypes will be expressed in a very high
level Prototype System Description Language (PSDL), which will eventually have
a graphical syntax. Design of the prototype will be carried out in this
language. PSDL identifiers will name reusable software parts and PSDL
operators will specify the architecture and control structure of a prototype

_ __ composed of those parts. A running prototype will be (semi-) automatically
synthesized from the PSDL description.

A possible implementation of computer aided prototype synthesis from reusable
parts is that the parts are stored in a software database (ONUEGBE85a,
FRANKOWSKI85], that PSDL operators denote code templates that "glue" reusable
parts into a running program, and that a PSDL processor "compiles" a design
into a running prototype by incorporating the reusable parts into the code

" templates. (See (FRANKOSKI85] for a more complete explanation of this
process.)

. " Efficient and systematic prototype use can be achieved by including techniques
for designing prototyping experiments in the requirements analysis methodolo-
gy, and defining a prototype use methodology which ensures that experiments
are conducted systematically.

To achieve the technology transfer goal, and obviously to educate ourselves
about prototyping, RaPIER methodology and tool development will be guided by

- examples from actual Honeywell projects. The results of working the early
examples will influence further RaPIER development. In addition, early
versions of the RaPIER prototype engineering environment will be applied in
practice projects at the research laboratory and in pilot projects at
production sites. The final version of the RaPIER environment will be

S- influenced by the results of these practice and pilot projects.

Figure 1-1 shows RaPIER's overall technical approach.

Honeywell Computer Sciences Center .
............................... r
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1.L FIRST YEAR GOALS

RaPIER's first year goal was to lay the technical and methodological founda-
tions for the prototype engineering environment, and to begin the technology
transfer process. During this first year, the RaPIER project worked in five
areas:

o Software reusability. RaPIER prototypes will be developed with reusable
Ada software parts. Reusable software possesses certain characteristics
such as a flexible interface. Reusability characteristics are explicit
goals for reusable software parts, and reusability guidelines are recipes
for producing Ada software parts that meet those goals.

o Software base technology. Prototype development with reusable parts will
meet Its speed and cost goals only if it is significantly faster and less
costly to find software and reuse it than to recreate it. RaPIER's
reusable software parts will reside in a software database. The software
database management system must manage its contents so that prototype
developers can find the "right" piece of software quickly. The way
software parts are classified is a major factor in how fast they can be
located, and how well they can be recognized as being the "right" software.
Classification Includes the specification of individual parts (for example,
attributes such as author, number of source lines, and functional behav-
ior), and a scheme that induces searching paths in a software repository.

" - o Prototyping methodology. A prototype is a piece of software; like other
* software it must be designed and built in a systematic way. A prototype is

used in investigating and clarifying requirements. This investigation
should be carried out in a systemtic way. Therefore the prototype must be

-' " built and used under the control of a methodology. A methodology is based
on a life cycle; it constitutes a collection of methods to be applied at
each stage of the life cycle, methods to accomplish the transition from one
life cycle phase to the next, and ancillary methods such as a method for
incorporating prototyping into the procurement process.

S- ..- o Computer automation of prototype building and use. Tools that automate the
prototyping process will allow prototyping to meet its cost goal. Tools
that support the prototyping methodology will ensure that prototyping meets

L4 its technical goal of requirements consensus. Since we believe that
prototyping is the appropriate method for ensuring that a system meets its

.. ": users' needs, we will develop our prototype engineering environment as a".'-

series of prototypes.

o Technology Transfer. Technology is transferrable when it has recipients;
the finest technical advance will not be applied in practice if it does not F
meet practitioners' perceived needs. Therefore practitioners should be R&D
partners, expressing their needs and participating in developing the
solution to their needs.

The RaPIER work is guided and influenced by experience gained from examples.
Our first year plans included carrying out examples to validate initial
conjectures about the abovementioned technology areas.

Honeywell Computer Sciences Center 5
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The next subsection describes the contract and parallel work we did to meet
our first year goal.

tn

1.5 FIRST YEAR OUTCOMES

Sections 2 through 10 of this report describe our work between January 1, 1985
and January 31, 1986. Each section presents the problem we attacked, the
results we acheived, and the future work we plan. Section 11 presents a"-'
financial summary of the year's effort.

- Section 2 provides background material which the RaPIER team needed to
*understand before undertaking the development of the RaPIER prototype engi-

neering environment. It defines the broad application area, embedded computer ...

systems, for which RaPIER prototypes will be developed, what constitutes a
RaPIER prototype and who RaPIER's users will be. It also examines related
work in the requirements and automatic programming areas which leads us to
believe that RaPIER will be a novel system.

Sections 3 and 4 describe the methodology results achieved in this period.
Section 3 presents three methodological elements which are the foundations of
our future work: [11 constraints which a prototype and the prototyping
process must meet, {21 a prototype engineering life cycle, and [3) a prototype
construction methodology. The construction methodology is object-oriented;
that is, it prescibes that prototypes be constructed from objects in the
Smalltalk [INGALLS78 sense. Section 4 presents a model of computation that U
is appropriate for object-oriented program semantics, and suggests an
implementation of the run-time support for this computational model.

." Section 5 discusses requirements for a software base management system that
can support programming with reusable parts, and a scheme for classifying
those parts. The scheme is based on classifying software by logical behavior
rather than actual routine or object names. Prototypes are written using " -
logical behavior names, and logical behavior is bound to physical code only
when a prototype program is compiled. This late binding allows software to be .- 4

located in a software database undergoing frequent insertions and deletions. . .-

Section 6 presents three software reusability meta-characteristics and fifteen
reusability characteristics as the explicit basis for Ada reusability
guidelines. It then presents a selection of reusability guidelines which
software designers can apply to design and code reusable Ada software parts.
These guidelines are recipes for achieving the characteristics. The .
guidelines are arranged in chapters which parallel the Ada Language Reference
Manual [DOD83]. The section also contains sample Ada modules which exemplify
the guidelines.

" Honeywell practitioners have sent a loud, clear message that programming with
reusable parts will not yield substantial time and cost saving if it does not
provide some method of quickly developing new software parts when reusable
parts are not available. Section 7 examines one alternative to line-by-line

" coding of new software. It presents a technology assessment of the current
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state of the art in program development using program transformation systems
such as DRACO (NEIGHBORS80], and concludes that this technology is either too3 immature or not targetted correctly for easy inclusion in the RaPIER environ-
ment.

.. ,. -.

To achieve our technology transfer goals, we must develop a prototype

engineering environment that solves practitioners' perceived problems, and
meets their requirements. To do this, and to education ourselves about

5; prototyping, RaPIER methodology and tool development is being guided by
examples drawn from real Honeywell programs. During the past year we
developed three prototypes: two of facets of Honeywell's Space Station work,
and one of a fragment of the RaPIER environment. Section 8 reports on the
Space Station example prototypes, and the lessons learned from developing
them.

In addition, the RaPIER project has formed a RaPIER Technical Advisory Panel
(RaPTAP) comprising ten engineers from various Honeywell divisions. RaPTAP
periodically reviews our work and advises us on its relevance to Honeywell
divisional problems and the liklihood that the divisions represented will

dd accept the technical solutions we are devising. Individual RaPTAP members
also provide advice on a one-to-one basis.

Prototypes are developed from initial requirements presented by customers. We

developed Just such a set of initial requirements for the RaPIER prototype
engineering environment itself. Section 9 presents these requirements, and a
critique of them based on our fragmentary prototype of RaPIER. These
requirements will be improved next year as a result of using the more complete
RaPIER that we will develop.

.J . .s

..1
1.6 FUTURE WORK

Throughout the first year of the RaPIER project, we decided to attack some

problems and postpone consideration of others. In addition, one year's work
is often not enough to complete work even on a problem which is being
considered. Each section of this final report gives the details of proposed
future work in a particular area. The following list suggests general
directions for future work. L -
Our overall future plan is to continuously improve our prototype of RaPIER
with new methods and tools, and apply the evolving prototype to an increasing-
ly challenging set of example problems supplied by Honeywell divisions.

IV

We will expand RaPIER's methodological foundations to cover the other phases
of the prototyping life cycle and the transitions between phases. We will
work to fit prototyping into the general product development life cycle, and
into the DoD procurement process.

To support prototype construction, we will continue reusability and software
base work until developing prototypes with easily locatable, well understood
software parts becomes standard operating procedure. We expect to complete

Honeywell Computer Sciences Center 7
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.

the Ada reusability guidelines next year, to apply them to building RaPIER's No
repository of reusable Ada parts, and to improve the guidelines and the parts
as we gain experience. We expect that the software database management system
will be under development and enhancement for the next four years.

We will provide automation for all the methods we develop with a series of
more and more complete prototypes of RaPIER. The eventual RaPIER prototype
will support all phases of the prototyping life cycle.

The culmination of the RaPIER project is pilot use of a prototype of the
RaPIER engineering environment in Honeywell divisions. In preparaton for this
step, we will conduct a domain analysis and develop domain specific reusable
software parts for the application area(s) in which the pilot projects are
conducted.

Finally, we will revise the prototype of RaPIER based on the results of the
pilot projects. That revised prototype will be ready to be made into a
product quality prototype engineering environment.

f' The RaPIER team develops new technology only when there is none available in

either the commercial or the research marketplace., We will continue to track
these marketplaces throughout the program, adopting and adapting as much .
existing technology as we can. -RaPIER is supported in part by the DoD STARS
Initiative's Application Area whose main thrust is software reusability. We
hope to use results from other Application Area projects whenever possible'.%

r °°

..
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SECTION 2

BACKGROUND

We began the RaPIER project with a careful examination of our objectives and
non-objectives. This examination helped us define who RaPIER's users would

be. Knowing the proposed user community allowed us to propose RaPIER system k-.
1 ** requirements that would meet their particular needs. This examination also
S:provided a definition of what a RaPIER prototype would be. That information

allowed us to propose a methodset and toolset for developing that kind of
prototype. Finally, we examined related work in the areas of building models
of systems and quickly building software, both to ascertain what technology we
could adopt for RAPIER, and to identify RaPIER's niche. This section is a

- .summary of that background study and those initial decisions.

2.1 EMBEDDED COMPUTER SYSTEMS

An accepted definition of embedded computer system (ECS) is "systems (that]
-.- are embedded in larger systems whose primary purposes are not

computation...Common examples of embedded systems are industrial
process-control systems, flight-guidance systems,...radar tracking systems,
(and] ballistic-missile-defense systems..." [ZAVE82]. The class of ECSs is
important to DOD because It includes most mission critical computer systems.

* Commonly, ECSs are real-time systems with critical timing demands and intri-
cate ordering constraints. They are often distributed and have complex
interface with the system in which they are embedded. During development, ECS

* : : requirements undergo constant changes because of changes in their surrounding
system. Requirements problems also arise because ECSs are developed using
state of art technology with which few developers have experience. V7-

We are now struggling with the question of how prototyping can be applied in
investigating requirements for ECSs. We must identify the end-user of a truly
embedded system, the user visible function that can be prototyped, and the
experiments that can be conducted with these prototypes. In the interim, we
have chosen the broadest possible interpretation of the ECS definition given

. -above, and have built prototypes of user-interfaces to control systems. We
chose user-interfaces for two reasons: (11 because it is obvious how a
prototype of a user interface can be used to pin down end-user requirements
and [2} because "the portions of [multi-function systems] for which it is most
difficult to define requirements are those supporting the cognitive processes
of the user" [RADC84]. These examples have given us the opportunity to test
*our tools and methods for building prototypes, to think about tools and

,, .. .

Honeywell Computer Sciences Center 9
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methods for using prototypes, and to show our prototyping concept to ECS
engineers who will help us define how to use prototyping for truly embedded
systems. V N.

2.2 THE USER 
tN "

The "user" mentioned throughout section 1 is, obviously, the ultimate user of
the system under development. However, there are two classes of prospective
users of the prototype engineering environment. One is the prototype develop-
er, who may be a specialist in prototype development, or a system or software
engineer involved in requirements investigation who develops the prototype as
a tool. The other is the prototype user, who must be an expert in the domain
of the system under development. This domain expert may be a customer, an

* end-user or his/her representative, a procurement specialist, an engineer
,.. representing a prime contractor, or a system engineer from the same organiza-

tion as the builder of the prototype and/or the final system. In this paper,
we distinguish between prototype developers and prototype users, but group all .-: .

prototype users together under the word "user."

2.3 WHAT IS A RAPIER PROTOTYPE

A RaPIER prototype is a vehicle for investigating computer system and software "
requirements. It is a working model of some requirements of a system under
development. Initially, it serves as a baseline for changes that will lead to
final convergence on requirements. Eventually, it represents a requirements
agreement between developers and customers. We expect a prototype to be used
interactively in controlled experiments. We expect that each experiment will
lead to changes in the prototype. These changes serve two purposes: to give
users the sense that developers have understood and reacted to their needs

* (communication), and to provide a better vehicle for subsequent experiments.

Because a RaPIER prototype is used to investigate requirements rather than
being an initial version of a product, it is enough that it be an incomplete
model of the system under development, showing only those aspects of the
system requirements that need investigation. The requirements analysis step
of the prototyping life cycle (see subsection 3.4) determines which require- "-
ments are to be investigated. In order to model the aspects of interest
adequately, the prototype may also model other parts of the system as an
environment for the aspects of interest. [ZAVE82] (see subsection 3.9, Note
A) and [BALZER79] argue that the environment in which a system operates should wn'
be part of the system's requirements specification. This argument applies
equally well to a prototype, since the prototype serves as a requirements
specification. [BALZER79] says:

"...The environment in which the system operates and with which it
interacts must be specified. Fortunately, this merely necessitates -
recognizing that the environment is itself a system composed of
interacting objects...which are by definition unalterable...In fact, the

10 March 1986
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only difference between the system and its environment is that the
subsequent design and implementation will operate exclusively on the
specification of the system."

In concept, a prototype's environment comprises [1} aspects of the system
under development whose requirements are not being investigated and (21 the

external environment of the system under development. Parts of both compo-
nents may be modeled in software. Those environmental things which are
modeled are considered part of the prototype, but not part of the "prototype
proper." Objects in the prototype proper are constructed to be modified
easily. That is, their code can be changed so as to alter the behavior they
display. Objects in the prototype, but not in the prototype proper, are not
constructed for modifiability. It is "fair" to expect to modify parts of the
prototype proper; in fact, prototyping experiments are planned to elicit
judgments and measures that will lead to changes in the prototype proper. It
is not "fair" to expect to be able to modify parts of a computer simulation of
a prototype's environment. Using a prototype means giving it inputs. To the
extent that inputs constitute the environment in which a prototype runs, that

;. ., environment will change. But the code that models the environment will not
change between experiments, except in extreme circumstances.

, A RaPIER prototype is not a "black-box" model of system requirements. It
exhibits structure. That structure is intended to reflect the users' view of
the partitioning of a system's behavior Into modules, rather than the
partitioning that appears in design and source code. Partitioning according
to the user's view should lead to easily modifiable prototypes. (See
subsection 3.6, "A Prototype Construction Methodology," for details.) We
conjecture that most users mentally partition the same system's behavior into
the same conceptual modules, and that a prototype builder can capture that
partitioning. The RaPIER project will test both this assumption of uniqueness
and whether there is a method for capturing that unique users' view. [ZAVE85]
claims that "most formalisms introduce internal structure - if only to
decompose complexity" (see subsection 3.9, Note B). One obvious method of
capturing that users' view is to use the partitioning in terms of which
initial requirements are written.

There are two possible architectures for prototypes: the eventual
implementation architecture, which is susceptible to incremental development,
and the users' view architecture, which supports easy modifiability but not
other desirable implementation traits such as reliability or survivability.
Because the prototype is partitioned differently from the eventual
implementation partitioning of the system, it does not lend itself naturally
to incremental enhancement into final product. It can either be abandoned or
retained for prototyping system enhancements.

Because the prototype is partitioned differently from the eventual
implementation partitioning of the system, it also does not lend itself
naturally to investigating design trade-offs. Perhaps later in the project we
can devise methods of using a prototype which is NOT structured as the
implementation is structured for Investigating performance of implementation
designs.

Honeywell Computer Sciences Center '-
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2.4 RELATED WORK

This subsection compares the RaPIER work to other work which entails either
building models of systems or quickly building software. The comparison
considers the purpose of the model or software and the approach to producing

2.4.1 Simulation

Simulation and prototyping are similar activities. Their high level goal is
:. the same: to investigate aspects of a proposed or existing system in order to

improve it based on the results of that investigation. The stages of
simulation model development described in (FRANTAT77 are very similar to the
phases of the prototyping life cycle presented in subsection 3.4. The process
(or scenario) view of simulation presented in [FRANTA77] and RaPIER's
object-oriented system model are also quite similar. However, simulation and
prototyping are not the same.

Discrete or continuous simulation is the process of building and exercising an
abstract model of some crucial parts of a system in order to obtain
performance(1) information that is impractical to obtain by analytic or
numeric solution of the model or from direct use or observation of the system.
A simulation model is based on an implementation architecture. It is a
stochastic model and the results of exercising it are statistical predictions
of system performance.

Prototyping, in the RaPIER sense, is the process of building and exercising a
working model of some crucial parts of a system in order to determine whether
the model behaves (functionally) in such as way as to solve the problem that
the system is intended to solve. A prototype is not necessarily structured as
an eventual implementation of the system under study will be structured. A
protutype is a functional model and the results of exercising it are judgments
about the system's adequacy as a solution to the problem at hand. We do
recognize that system performance is an important facet of system behavior,
and that a poorly performing system certainly is not an adequate solution to
the problem at hand. Therefore we hope that RaPIER prototypes will eventually
be able to answer performance questions. But for the near future they will be
used to deal with questions of functional behavior only. s

Simulation and prototyping are complements. Prototyping is used to determine
whether a proposed system solves the right problem; simulation is used to
determine the performance of that system. Because the Intent of simulation is
to determine system performance, it does not generally require a "realistic"
model or one with which users can interact. Simulation is often used to

(1) We mean performance in the broad sense of speed, reliability, availabili- .-
ty, resource needs, in fact all system characteristics except functional
behavior, which can vary with variations in a system's architectural or
algorithmic design.
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provide designers with information to make design trade-offs. Prototyping, on

the other hand, deals with users' needs and, therefore, prototypes must be
"realistic" and support user interaction. The aim of prototyping is to
exploit users' application experience and expertise. In the sense we are
using the words, a traditional flight simulator is a prototype not a

• .simulation, because of Its realism and provisions for user interaction.

Prototyping and RaPIER are useful during requirements analysis, before an
I' I~implementation architecture has been designed. Simulation, and simulation
.Systems such as Simula or GPSS, are useful during design and implementation,

when the system's structure is proposed or known, and the performance of that
structure needs to be determined.

2.4.2 Application Generators I.
Application generators (AGs) are one of the oldest tools for fast development

-. of software. "Their original purpose was very narrow, typically being used to
generate programs whose output is a series of reports (such as RPG). Later,
they were extended so they could interface with an existing database, perform
statistical operations, and display the results" [HOROWITZ84]. Present day,
commercially available AGs include Nomad, Focus, Mantis and QEE. AGs are

. ,.geared primarily to support data-intensive business application development.
They provide a very high level, special purpose, user friendly language and

. are often used by end-users. Their method of producing programs is to
instantiate templates that are tailored according to the user's specification.

, IThe methodology for developing an application with an AG is to specify a
.- limited prototype of the application and incrementally extend or modify that

prototype into the final version of' the program.

The major differences between RaPIER and extant or proposed (HOROWITZ83] AGs
are [1} their domain of use, and [21 the functionality they provide In that
domain. If the domain for RaPIER prototypes was data-intensive business
applications, and if the functions to be performed were data analysis,
reporting, database interaction, and some special functions like financial
modeling, then RaPIER would be superfluous. However, our intended domain is
embedded computer systems, and we wish to model general functional behavior in
the domain. No extant or planned AG has that target domain and breadth of

. functionality. The embedded computer system domain is broader, less well
understood, and changing more quickly than the business domain. Those domain

S""characteristics seem not to permit definition of a set of code templates that
an end-user could instantiate by specifications in a user friendly,

• .." non-procedural language and which would provide the necessary range of
functionality. Therefore we expect that RaPIER users will be software

-:. specialists at least in the near future.

. -. What RaPIER can learn from AG work is that the embedded computer system domain
is too broad a target for the RaPIER system. Application generators do not
support general business programming. They support special areas such as
report generation or financial modeling. The embedded computer system domain
must be broken down into domains such as trainer systems, space station,
avionics, and the like. Analysis of the narrower domains may lead to several

Honeywell Computer Sciences Center 13
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special purpose prototype development systems, each based on the initial
RaPIER system, with which domain experts with little computer experience can
develop prototypes. This could happen because domain experts in a narrower
domain than embedded computer systems could use even a fairly complex
prototype development language that contained their concepts and vocabulary
along with a rich set of templates, to develop prototype programs without help,. ,,

from a computer specialist.

Once RaPIER can support prototype development by software engineers, the same
computer science technology plus domain analysis might help us specialize our
PSDL and populate our software repository with domain specific reusable parts,
thus allowing domain specialists (for example, system analysts) to construct
prototypes. --

2.4.3 Requirements Specification Systems

In the traditional software development life cycle [BOOCH83a], code is written
after (at least the first iteration of) requirements and design work are
finished. Thus a working system is available for the first time during
testing of the implementation. [ZAVE79] documents the problems with this
traditional life cycle. Requirements specification systems support this
traditional life cycle. These three commercially available systems represent
the spectrum of requirements specification systems:

o SADT [ROSS77]. An unautomated graphical language for describing systems
plus a methodology for producing the descriptions. It provides no L

prototyping capability or support for computer management of requirements
information.

o PSL/PSA [TEICHROEW77]. A computer aided system for documenting require-
ments that creates and maintains a database, analyses requirements for
completeness and consistency, and produces a variety of printed reports. .

It provides no prototyping capability.

o SREM (ALFORD77]. A system for documenting and simulating requirements for
real-time systems that maintains a database and produces some printed
reports. It provides two types of discrete event simulators; neither
creates a "realistic" model of (parts of) the system under study with which 7 .
a user can interact.

Requirements specification systems are an improvement over unautomated
requirements analysis by ad hoc techniques, but they do not address the
problem of exploiting domain specialists' expertise in the early life cycle
phases. Prototyping is intended to make a working model of (crucial parts of)
a system available early enough to exploit domain specialists' expertise
before coding begins. From these systems, RaPIER can learn requirements
information management techniques. These techniques might contribute to the .

incorporation step of the prototyping life cycle presented in subsection 3.4.

14 March 1986

- - -. K. . -. -. -. . . . ..-..



.5.°o .J

Background -
I.I.

2.4.4 Language Based Prototyping Approaches .A

Language based approaches provide prototyping either as a by-product (for I
- example, GIST) or as a result of the nature of the language itself (for

example, Lisp). RaPIER is intended as a prototyping system with linguistic
and methodological support for prototype construction, prototype execution,lh
requirements analysis, and incorporation of prototyping results into the
product development life cycle. RaPIER and an appropriate language could be

p; mutually reinforcing. Our present approach to developing prototypes is to
. employ reusable software parts and a language to describe how the parts are

assembled into a prototype. If a language became available that provided the
same broad functionality as can be provided by a large repository cf parts,
and in which prototypes could be specified at the same high level as they can
be in PSDL, then the RaPIER automation that supports the methodology (as
distinct from the automation for language processing and the software reposi-
tory) could be used to support that language. Such an alternative approach
might be considered if, for example, the RaPIER system were to be Introduced
into a group that was expert with an appropriate language.

There are a number of language based approaches to prototyping, including:

o Executable Specification Languages (ESLs): A specification is a formal
statement which fully describes the intended observable behavior (the
"what") of some object without describing how that behavior is to be
implemented. An executable specification (ES) is one that can be executed,
either by transforming it into an executable program or by interpreting it
directly. An executable specification language has an operational seman-
tics that permits its specifications to be executed or interpreted in some
manner. An executed specification is a prototype, but changes are made to
this prototype by changing the ES. Therefore, once the prototype is
approved by the customer, the ES (a formal specification) is a valid basis
for design, design verification, and implementation. ESLs are a key
component of an alternative software development life cycle called the
"operational" approach to software development.

Gist [BALZER82], OBJ [GOGUEN79] and PAISLey [ZAVE82,ZAVE8'.] are well known

executable specification languages. Gist and PAISLey are intended for the
development of efficient software products through correctness preserving
transformation of the high-level operational specification into an .
optimized program. OBJ is a language for writing and testing formal
specifications. All three make prototyping available automatically, but
since their main goal is correct specification or efficient programs, they
have neither methodological support nor special tools for prototyping.
However, their major drawback for our project is their level of detail. '

9 The well known resistance to formal detailed specification languages among r
software practitioners militates against adopting an ESL for prototype
development at first. Rather, we chose an approach that combines a formal
but very high level PSDL with reusable parts that may be specified
informally. However, using a detailed and formal executable requirements,"
specification language is probably the "right" long range solution, since

,-1 the all important incorporation step then becomes automatic.

Honeywell Computer Sciences Center 15
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o Very High Level Languages (VHLLs): These are general purpose, executable
notations containing constructs that express high-level functions or con-
cepts, and for which there is a language processor that implements these 1I
functions. VHLLs allow programmers to describe high-level functions clear-
ly and succinctly, thereby limiting source code complexity. Their
processors implement the high-level functions or concepts, thereby freeing
programmers from focusing energy on implementing them. VHLLs are not
domain specific and usually "rely on a small number of semantically neutral
primitive constructs such as mathematical sets" [BIGGERSTAFF84]. They 71
sacrifice efficient execution for clarity and succinctness; that trade-off

is acceptable in a prototyping language. SETL is a well known VHLL and has
been used to prototype an Ada interpreter [KRUCHTEN84I.

o Problem Oriented Languages (POLs): The POLs of interest for prototyping
are special purpose VHLLs that offer high-level primitives that are
specific to a problem domain. They have all the advantages of general
purpose VHLLs and offer concepts from the problem domain that can make
source code programs even more succinct and lucid. POLs can, perhaps,
permit application area experts to develop prototypes without help from
software specialists. Some examples are: OPS5 [BROWNSTON85] in the expert
system domain; MODEL [CHENG84] in the database domain; Gambit [LARRABEE84]
in the video game domain; and PHINIX [BARSTOW85a] in the oil exploration
domain. Some POLs are application generator languages, some use Al to aid
program development, and some depend on traditional language processors.
Whatever the means of implementing a program written in the language, the
effect for the program writer is the same: a familiar set of concepts and
vocabulary that hide low- and middle-level implementation details and
permit the fast development of applications. These qualities support
prototyping.

o Flexible Languages: By flexible languages we mean interpreted languages
such as Lisp, Lisp with Flavors, SMALLTALK, or APL, that give prototype

p developers an interactive environment in which to build prototypes I
incrementally, and which produce an easily modifiable prototype.
Prototyping is a kind of exploratory programming and an initial prototype
is a sketch. It is a "given" that a prototype will change both during its
development and while experiments with it are in progress. Under
exploratory conditions, it is easier to develop a prototype in a language
which allows "the programmer to defer commitment as long as possible. A -

decision that has not been cast into code does not have to be recast when
it is changed. Thus, the longer one can carry such a decision implicity,
the better" (SHEIL83a].

In addition to allowing deferred commitment, the languages cited above -

provide "an integrated programming environment which uses language specific
programming knowledge to provide exactly those control and bookkeeping
functions that are the greatest drain on a programmer during rapid system
development" (SHEIL83a]. Prototyping is, of course, one kind of rapid
system development.

16 March 1986
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, The drawback of flexible languages is that their users must be "gurus." No

end-user will ever develop a prototype in Lisp, nor will a software
engineer who doesn't know Lisp. However, for prototypers who are profi-
cient in Lisp or SIALLTALK, that language along with Its environment and a .
library of reusable objects may be an ideal foundation for RaPIER.

2.4.5 Incremental Development

It is tempting to consider developing a product in stages, providing early
versions (prototypes) for users to judge and enhancing those early prototypes
into a final product. However, if prototyping is undertaken for requirements
clarification, this can be a dangerous strategy for other than small programs
that will be used only by friendly users. According to [GOMAA83]

"with small systems, it may be feasible to allow a prototype to evolve
into the production system. However, with larger systems, this is
unlikely to be advisable because the software engineering approach
required to develop a production system is very different from thatrequired to develop a prototype."

And, in likening prototypes to scale models, [WEISER82] says

"A prototype is one kind of scale model•.. A scale model provides
scalable (that is, generalizable) information about a system's actual
interaction with its intended environment.. .A quickly built software
system which is equivalent in every way to the desired end product is
not a scale model but just a cheap final product. A scale model
sacrifices something for its speed of construction. (FOOTNOTE: Too
often what is sacrificed is maintainability, and many a scale model
has been sold as a final product with disasterous effects for
maintenance. )"

If prototyping is undertaken to clarify requirements, we recommend building a
"throw away" prototype in the interest of obtaining a robust final system that ...
is built to meet qualitative requirements, such as maintainability.

..

Honeywell Computer Sciences Center , 17

4. -



.......................................... 4"'.

.4

'4
Final Scientific Report: RaPIER Project (Contract No. N00014-85-C-0666) (

w '
'.4

PA.'
.4

£

r4..

P. .~.. .4
P. %* ** .P

B!

blank back page

4

P

4
'"'.4..,

* 18 March 1986

~ir
U.-.

-4'. - . -. . . 4......4.-. . -- -,-. - . - - - . - - - . -
. . .~. 4 .

...-- 4 .,~ . . 4 . 4 . *4 - .. .- 4~..-..-. .. ..- -. .. -- ___________________



Prototyping Methodology

SECTION 3

PROTOTYPING METHODOLOGY

This section describes initial work on the methodological underpinnings of the
RaPIER prototype development environment. The sect .on deals with two major
elements of prototyping methodology: a prototyping life cycle and a prototype
construction methodology.

The material presented here is the result of work on Task H1.6 and Honeywell
funded work.

IN~

*~ .. 3.1 PROBLEM STATEMENT

Prototyping is not hacking. A prototype Is a piece of software; like other
software it must be designed and built in a rational way. Like other software
it must exhibit certain qualities, modifiability for one. A prototype must be
built quickly. A prototype is used to achieve a goal: identification and
clarification of requirements. The requirements under investigation must have
been selected in a rational way. Finally, the results of exercising a

" -prototype must be systematically incorporated into the product development
process. These needs will be met only by building and using prototypes under

. the control of a methodology.

3.2 OUTCOME

We started the methodoloy task by defining three elements which are the
foundations of further work: [1} constraints which a prototype and the
prototyping process must meet, [21 a prototyping life cycle, and 13} a
prototype construction methodology. Explicit constraints on prototypes and
the prototyping process provide a yardstick against which to measure methods
and their supporting tools. The life cycle serves as a roadmap for the rest
of the methodology work and for the entire project. The construction .
methodology provides needed guidance for developing prototypes. This guidance
is important because our research methodology is based on building example
prototypes to direct the course of the development of both the RaPIER tools
and the execution methodology.

H t i,.UeHonewell Computer Sciences Center 19 ;.
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3.3 CONSTRAINTS

We have identified four constraints on the prototyping process and on the
prototype itself. Three were mentioned In subsection 1.3.

1. The process must be relatively inexpensive. A development project should
dedicate resources to prototyping equal to what can be saved by
eliminating risks during development and eliminating rework immediately
following initial product release. [GOMAA83] argues that the prototyping
life cycle costs must be no more than ten percent of the whole development
cost. It is difficult to measure whether ten percent of development
resources is the amount prototyping saves, less, or more. The ten percent K'
figure also does not include reported user satisfaction with the installed
system [ALAVI841 caused by early "buy-in" to development goals and
decisions. However, ten percent seems to. be what the traffic will bear.

2. The process must be relatively quick. The purpose of requirements
prototyping is to get the kind of feedback from customers that is
obtainable only when they have hands-on experience with a working version
of (a part of) the system. If this feedback is not obtained quickly, it
cannot influence requirements analysis. Speed, of course, is relative to
the length of the entire development: a six month project needs a
prototype within the first month while a six year project can wait six
months.

3. The prototype must be a communication device. Traditional black-box
requirements are difficult to discuss even among computer specialists, but
especially between domain experts who are not computer scientists and the
computer scientists who are solving their problems. [ZAVE85] states that -.
"Another important factor in user/analyst communication is the ability of
the user to grasp and evaluate the concepts behind any proposal.
Experienced systems analysts report that an explicit operational model is
much sore helpful than black-box requirements ..... " That structure will
model the user's view of the solution to the problem, not the structure of
the eventual implementation of the solution (see subsection 3.9, Note B).
The CEO of Black & Decker Is reputed to have said that his customers don't
want drills, they want holes. The prototype must show holes, not drills.

4. The prototype must be modifiable. The purpose of experimenting with a
prototype is to generate common understanding and comments that lead to .
changes in the system requirements. The "experiment-modify" cycle neces-
sitates changing the prototype to give users an updated discussion vehicle .
and to demonstrate developers' responsiveness.

The RaPIER methodology supports the construction and use of the sort of
prototype described here, under these process constraints.
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The RaPIER project has proposed a four phase prototyping life cycle:

1. Analyse the system's (or system software's) initial requirements. Deter-
mine which are poorly understood, high risk, possibly incomplete, have
caused problems in past systems, or represent new technology. Formulate
questions about then that can be answered by exercising a prototype.

L These questions are part of the input to the design-and-build phase of the
life cycle.

" :The methodological support for this phase comprises:

o criteria for deciding which requirements to investigate;
o methods for formulating questions about the requirements under investi-

gation; .
o a strategy for designing experiments that will get answers to the

requirements questions.

2. Design and build a software prototype to answer the requirements questions
generated in step 1. This prototype may model only selected parts of the
system under development, and may model some of the environment of the
system (or parts) under study (see subsection 3.9, Note A and the
discussion in subsection 2.3).

The methodological support for this phase comprises:

o a model of prototypes in terms of which developers design prototypes
(see subsection 3.5);

o techniques and a language for constructing prototypes according to the
model;

o techniques for ensuring that the prototyping process and the prototype
itself meet the criteria set out in subsection 3.3.

3. Experiment with the prototype, modifying it in response to domain experts'
• . L"comments. These experiments both foster communication between system or

software developers and domain experts and produce changes in the baseline
requirements. Modifying the prototype may involve repeating portions of -.

phases 1 and 2 of the life cycle. L
The methodological support for this phase comprises:

o procedures for systematic experimentation with prototypes;
. o criteria for deciding how long to continue prototyping experiments and

how extensive each experiment must be; [I
o a notation for stating the results of the prototyping experiments, that

is, stating the prototype's behavior. This must eventually be a formal
notation if step 4 of this life cycle is to be carried out formally.
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4. Incorporate the results of the prototyping experiments into the final
requirements. These final requirements, the engineering response to the
initial requirements, are used in designing and building the actual a-

system.

The methodological support for this phase comprises:

o a formal notation for specifying the prototype's behavior, as input to
the incorporation process;

o a mapping from that formalism into the formalism of the engineering -

response document;
o a formal notation for stating the final requirements.

Because a prototype is a program, it formally represents the requirements
agreements between customers and vendors. That program is made up of code ". -
units with (semi-)formal specifications and Composition operators (see
subsection 1.3) with known semantics. These formal objects--program, code
unit specifications, and composition operator semantics--should be usable
to generate a formal engineering response through formal transformations.
There are two factors militating against using a formal incorporation ;
approach in the near future:

o lack of a common Use of formal specifications for describing the

behavior of individual code units;
o lack of a common use of formal specifications for expressing system

requirements.

Although formal requirements languages exist (for example, Gist
[BALZER82], PAISLey [ZAVE82], and RSL (ALFORD77]), we feel it is danger-
ously speculative at present to choose one and develop a mapping to it
from some formal description of the prototype's behavior. The work needed
to make the selection and develop the mappings is beyond the scope of the
RaPIER project. Therefore the project can, at best, recognize the problem
and suggest an approach to solving it.

. Subsection 3.6 describes the methodology for the Design and Build phase of the
* prototyping life cycle in detail. Methodological support for the other life

cycle phases is part of the RaPIER project's future work. W

3.5 THE PROTOTYPE MODEL

The model of prototypes characterizes a prototype's conceptual architecture
and the abstract building blocks that populate the architecture. The model -..

constrains the ways an informal requirements specification will be realized as
a prototype to those that can occur in the conceptual architecture with the
conceptual building blocks. Prototype builders think in terms of this model
when putting prototypes together. This model is formulated in computer "C
science terms; it is not necessarily the model that prototype users envision

.. when interacting with the prototype.

2Mc1
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A prototype is a collection of objects which operate concurrently and0autonomously. The objects communicate asynchronously by passing messages.
Internally, each object may contain some local state and sequential procedures
(or methods) with which to respond to messages. This model is similar to
S.ALLTALK's CGOLDBERG83] model, except that inheritance is not currently a
feature of RaPIER objects. We are not ruling out inheritance as a character-
istic of RaPIER objects. We simply have not yet investigated the interaction
between inheritance and other RaPIER assumptions, for example the assumption
that RaPIER objects will most likely be implemented in Ada. Our model is also
similar to the Gist [BALZER79], CSDL [WOOD8 1] and Flavors (CANNON82] models.-..
Section 4 discusses one implementation of this conceptual architecture.

This model was chosen for several reasons:

o Objects (rather than subroutines, data structures, or general code frag-
ments) are a convenient unit of reuse. The work on abstract data types

[LISKOV75], SMALLTALK [GOLDBERG83], and Flavors [CANNON82] bears this out.
Prototype developers using RaPIER will think in terms of combining reusable
units. These units should present complete enough behavior to be (11

- understood and used as units rather than incomplete fragments, and {2}
combined without internal modification.

o If prototype building is to be carried out at a higher level than
line-by-line coding, it will have to be carried out in a very high level
language (VHLL) that suppresses details of the running prototype. If that
language supports a model or paradigm, programs written in it can be
concise and still clear because mechanisms implied by the paradigm do not
have to be stated explicitly in the program. We think that a VHLL for
prototyping must suppress control details by supporting a paradigm that
provides a control metaphor. We also think that information flow, in this
case in the form of messages, is an appropriate metaphor for control In a
VHLL for prototyping. When people draw informal pictures of systems, they
often draw objects and information flow among them, suppressing other
details such as control flow. Our adoption of the object/message paradigm
provides a prototype control metaphor that developers appear comfortable

*. with when describing the kinds of systems whose requirements will be
*-.. investigated by prototyping [ZAVE82]. We conjecture, therefore, that a

prototyping VHLL that supports the object/message paradigm will be natural
S. to learn and use.

o We conjecture that users interacting with a prototype will view it as a
collection of autonomous, concurrent processes. The builders' model, which
uses objects to implement concurrent processes, was chosen in part because

* 1.. of this supposed coincidence of views. Although users will not think in
computer science terms, of objects with local state and methods, and of
asynchronous communication by message passing, they will think of a

• -. collection of processes, modules, or objects, each responsible for some
part of the prototype's behavior. If the objects with which the builder
works are the same as the objects the user conceptualizes, changes to the
prototype will be localized, yielding an easily modifiable prototype. The 5-

next subsection examines this reasoning In detail.
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3.6 A PROTOTYPE CONSTRUCTION METHODOLOGY

This year the RaPIER project concentrated its methodology work on prototype
construction, the second phase of the prototyping life cycle. This paper
presents RaPIER's proposed methodology for quickly and inexpensively building ; .

modifiable prototypes that serve as communication devices during requirements .

analysis. The methodology is operational (ZAVE82] and object-oriented
[BOOCH83].

A prototype is a "white-box," operational requirements specification. "An *.'

operational specification is a(n]...executable representation of [a part of]
the proposed system. It is described in terms of computational structures
that are known to have a wide range of possible implementations, and its .-

* organization is based as closely as possible on the problem to be solved",ZAVE85]. The computational structures are modules that, in concept, operate
concurrently and communicate by message passing. Messages are data or control
requests. The modules realize problem oriented behavior; they reflect the "
user's view of a proposed system.

The modules are objects in the SIALLTALK [INGALLS78] sense: autonomous loci
of control that interpret the messages sent to them by internally defined
methods. At present we have not included the inheritance mechanism in our
model of objects. Without inheritance, these objects are similar to those
produced using the object-oriented design methodology described in [BOOCH83].
They are "black-boxes" inside a "white-box" structure.

The prototype is expressed in a Prototype System Description Language (PSDL)
whose "nouns" are the above-mentioned objects, and whose "verbs" are composi-
tion operators that determine the control regime among the nouns. The threads '
of control in the running prototype are determined by {1) the composition of ..
the entire prototype, {2) the messages objects send to one another, and {3}
each object's internal control structure.

In summary, our methodology is operational in that it uses a prototype -

description language that can be executed and that deals with internal

structure. It is object-oriented because the internal structure is composed
of objects. The operational prototype description is represented in the PSDL
notation.

3.6.1 The Operational Approach

3.6.1.1 Explanation and Justification

The operational requirements definition approach [ZAVE85] assumes that a
user's informal statement of needs is formalized as a "white-box" operational
specification, giving a problem oriented architectural model of the desired
system.
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The operational approach, as presented in [ZAVE82], "... is to specify the~requirements for an embedded system with an explicit model of the proposed

system interacting with an explicit model of the system's environment... The

entire model is executable." The approach is operational "... because the
emphasis is] on constructing an operating model of the system functioning in
Its environmaent." [ZAVE82] contains detailed justifications of the approach.

[ZAVE85] presents an operational approach to the entire software development
process. The initial phases of the operational approach (problem understand-
ing and [requirements] specification) are explained as follows:

"During the specification phase, computer specialists formulate a
system to solve the problem and specify this system in terms ofimplementation-independent structures that generate the behavior of

the specified system. The operational specification is executable
-* by a suitable interpreter. Thus external behavior is implicit in

the specification (but can be brought out by the interpreter) while
internal structure is explicit.

"This description may make an operational specification sound like a
design, but it is not. First of all the structures provided by an
operational specification language are independent of specific

" . resource configurations or resource allocation strategies (and can
be implemented by a wide range of them), while designs actually
refer to specific runtime environments....

"Not only are the structures of an operational specification lan-
guage independent of implementation-oriented decisions, but also the

S. •mechanisms (usages of the specification-language structures) in an
.- operational specification are derived solely from the problem to be

solved. They are chosen for modifiability and human comprehension
without regard to any implementation characteristics whatsoever."

" In developing software, the problem-oriented requirements specification is
transformed into a solution-oriented design and implementation. In developing
a prototype, the problem-oriented structure is retained, and the specification
is transformed into a running prototype.

We conjecture that retaining the problem oriented structure will make the
- prototype a comfortable communication vehicle, meeting constraint 3 set out in
* subsection 2.3. Though the fact that the prototype has a modular structure .-

• will not be apparent in the running prototype, we think that users will
• discuss the prototype's behavior in chunks that correspond to their view of

the system structure. We also believe that the users' chunks will correspond
to the prototype's module structure, meaning that the chunks of behavior under
discussion will be realized as one or a few related modules. These modules

- *.' are chunks that the prototype developer, a computer specialist, also under-
stands as units. These modules then, confine and direct discussions.

F" The prototype will be represented in a Prototype System Description Language
(PSDL) [FRANKOWSKI85]. PSDL's "nouns" are problem-oriented objects; its
"verbs" are operators which compose multiple objects into one source code
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program which is then translated into an executable program. The preferred
way to modify a prototype is to change its PSDL representation. These changes
will cause objects to be removed from the prototype, new objects to be I i
included in it, or changes to be made in the overall architecture or control .. ,E

regime. The fact that objects are autonomous entities with intrinsic behavior . -

allows changes to be made by the simple inclusion/exclusion of entire objects. :.
Some finer grained changes may be made by modifying the objects that comprise
the prototype. Retaining the prototype's problem-oriented structure makes
these kinds of modifications managable. Since the user's model of the system
is in terms of these objects, his/her comments about the prototype, and
suggestions for changes, will also be in terms of these objects. In most
cases, suggested changes should be local to one or a few modules. Either an
entire object will be included in/excluded from the prototype, or parts of a
module will be modified. In any case, changes will not be diffused among many
modules.

3.6.1.2 Implementation

* 'The transformation that turns an operational requirements specification into a
running prototype consists of assembling the reusable building blocks referred
to in the operational specification into a running program. Those building
blocks are objects, residing in a software base. They are stored according to

"* the classification scheme described in [ONUEGBE85], and retrieved under the
control of a PSDL which contains the operators that glue the objects into a

* running program.

The RaPIER execution environment [FRANKOWSKI85] executes the prototype. The
running prototype will eventually be a mix of compiled and interpreted code.
Modifications during prototype exercise will be made either by changing the

.* PSDL text, which will then be reinterpreted, or by dynamically linking a new
version of some object into the prototype. Suspension with state saving will
allow prototype runs to be resumed from the point of change rather than
restarted.

3.6.2 The Object-Oriented Approach

3.6.2.1 Explanation and Justification

Object-oriented programming is the programming paradigm embodied in SMALLTALK
[GOLDBERG83] and the Lisp flavor system [CANNON82]. The concept of an object
as a named computational entity with an identifiable behavior is central to
object-oriented programming. An object's behavior is its reactions to the set

. of messages it "understands," where a message is a request to initiate
processing or provide information, and "understanding" means possessing a
defined response. Messages are something like conventional procedure calls,
with the important distinction that "a conventional procedure call ...
denotes an action, and sending a message ... makes a request. In a typical
procedural [regime] it is hard to give up the notion that the caller of a
procedure is somehow 'in control.' ... In [the object-oriented world], on the
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other hand, a message is a request of what the sender wants with no hint or
concern as to what the receiver should do to accomodate the sender's wishes.
The sender, presuming all objects to be quite intelligent, trusts the receiver
to do 'the right thing' without worrying about exactly what the right thing
is. Thus assured, the sender relinquishes control philosophically as well as
actually, so that the interpretation of the message is left entirely up to its 6 %

recipient." [RENTSCH82].

I- Object-oriented programming can be carried out top-down or bottom-up. Top
down object-oriented programming comprises six activites [BOOCH83]:

1. Define an informal strategy for solving the problem at hand (in our case
: the informal strategy is the result of requirements analysis),

2. Identify the objects (nouns) in the informal strategy,

3. Identify each object's operations (verbs) in the informal strategy,

4. Define each object's interface; that is, the services and information it
offers to other objects,

5. Implement each of the objects,

6. Implement the informal strategy as a program that uses these objects.

In this case an implementation is developed for each object needed.

. Bottom-up object-oriented programming begins with a collection of reusable

software objects such as the SMALLTALK system's objects, the collection of
flavors that comprise a Symbolics operating system [SYMBOLICS84], or a user's
personal library. Objects for the problem at hand are built up by combining
more primitive (system or user-defined) objects. Eventually the system
contains the appropriate objects to solve the problem at hand. Then a program

. -- is written that uses these objects. Bottom-up object-oriented programmaing is
a natural way to exploit a software repository's resources. The program under
construction can certainly be designed top-down, but that design will take
into account the available resources and build down to meet them.

Our construction methodology is designed to produce prototypes which meet
constraints 3 and 4 of subsection 3.3 by a process which meets constraints 1
and 2 presented in the same subsection. Our work in the coming years will
test whether the methodology does this.

Ready-to-use building blocks of any sort for prototypes ensures the quick
construction of inexpensive prototypes, meeting constraints 1 and 2. Defining
these building blocks to be objects which encapsulate their own behavior
ensures easy modifiability of an individual object and of the entire proto-
type, meeting constraint 4. The objects we propose are user oriented; they""- appeal to the user's intuition about the system he/she is cooperating in ~ e
specifying. We expect, therefore, that comments about the prototype will

naturally localize themselves to one, or a few, object(s) at a time. This
also localizes the modifications needed to show that the developer understood
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the user's reaction to the prototype. One object can be replaced by another
which understands the same messages, but reacts differently to them, or
methods within an object can be replaced by others that implement different
behavior. Modifying individual objects results in modification of the entire
prototype.

Another major value we think results from object orientation, rather than,
say, functional orientation, is that the objects which implement the prototype
match, or come close to, the user's intuition about the system's structure.
This makes the prototype a comfortable communication vehicle, meeting con-
straint 3. In addition, the object paradigm controls the complexity of the
development process in the same way that abstract data types do, by providing
prototype developers with high level abstractions that are meaningful in the .-. -

application domain of the system under study. Yet another benefit of object
oriented prototypes may be that properly designed objects may also be usable
in a final system or at least serve as detailed specifications for objects in
the final system (see subsection 3.9, Note C).

3.6.2.2 Implementation

The RaPIER prototype engineering environment will contain a software database
CONUEGBE85] of objects designed to support prototyping in particular applica-
tion areas. The collection of objects will comprise some general purpose
objects, such as a window manager, a graphics package, or a text editor, and
application specific objects. For example, a RaPIER environment for avionics
prototyping might contain specific objects such as an air speed sensor or a
flaps manipulator. These objects are intended to be reused in many
prototypes. We expect that most of the objects in the RaPIER environment will
have been developed by the RaPIER team and other Honeywell personnel.
However, the database system will be able to absorb software from any source.
As long as a software module is an object in the sense we have been
discussing, or can be made into one, we want to acquire it for reuse.
[ONUEGBE85] discusses the management of large software repositories.

Initially, at least, there will not be a reusable module to realize every
behavior a prototype must exhibit. As more prototypes are developed, however,
the stock of reusable modules will grow. Barstow's [BARSTOW85] experience in
developing a rule base for transformational programming showed that "[a]s
successively harder programs were attacked during the process of rule develop-
ment, fewer and fewer rules needed to be added to the knowledge base. And
when a new domain ... was tackled, it became clear that much of the necessary
knowledge was already covered ... the process of developing rules for a given
task was considerably simplified by the fact that much of the necessary
knowledge had already been codified for rules in other tasks." This experi-
ence will most likely be duplicated for reusable objects.

When a reusable module is not available to implement some needed behavior
there are two choices: build the module from scratch or use some function of
a complete program such as a text editor, spreadsheet, graphics package or
compiler. New components may be "hand crafted" according to the reusability
guidelines, inserted into the software base and extracted under software base
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control. However, for a prototype of a state-of-the-art system, there will be
many missing functions and hand crafting each one will cause a bottleneck.
Therefore, we are looking into providing new modules by means of executable
specifications and/or application generators.

3.6.3 The Construction Procedure

F.. Like any program, a prototype is constructed by building subsystems and
putting them together into larger subsystems until the prototype is complete.
We recommend these steps, in this order, for constructing each piece of, and
the entire, prototype:'., *-:

1. Understand the requirement(s) that is/are to be represented. The require-
ments analysis phase of the prototyping life cycle will have produced a
set of requirements questions. The design phase begins with understanding
them and devising a method of modeling them.

2. In a manner more problem-driven than parts-driven, define a set of objects

that will represent the behavior of the requirements under study and the
communication paths among them. Express the objects' definitions in some
(eventually formal) specification language. Express the prototype's
architecture in PSDL as an operational, object-oriented specification.

Design should proceed In a net problem driven manner. By this we mean
that the definition of the objects that will comprise the prototype is
influenced more by what is needed to represent behavior than by what is
available in the software repository. However, the availability of
reusable parts must Influence the definition of the objects, otherwise

*2 having a parts repository will not speed up the construction process at
all. We expect some depth first exploration of the implementation of a
certain behavior with available parts, and backup to redesign objects when

I ~ a useful but not "exactly right" object is found in the repository.

3. Combine the parts into an initial implementation using PSDL. Submit the
PSDL to the language processor for synthesis and execution. Note that we

• . expect PSDL to serve as both design and implementation notation. PSDL

provides primitives to realize an object-composition paradigm, allowing
i ' prototype developers to express implementations at a very high level,

almost a design level. The PSDL language processor allows such a high
level notation to be executed.

4. Repeat:
o search for objects in the software repository,
o modify the prototype design and its PSDL specification to include or

exclude objects
o create new objects if necessary
o modify objects internally only if absolutely necessary
o submit the prototype specification to the PSDL processor for synthesis

and execution

until the PSDL specification of the prototype is satisfactory.
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Experiments conducted during phase three of the prototyping life cycle will
inevitably lead to modification of the prototype. Modification will be -

similar to initial building, except that only portions of the prototype will r
be rebuilt. The rebuilt portions will be integrated into a prototype
execution at a suspension point. Resynthesis of the entire prototype and
restart of execution will not be necessary. Building and modifying prototypes
is exploratory programming [SHEIL83] both because prototype requirements will
change as construction continues and because the implementation approach of
reusing parts necessitates design changes as parts are found. Therefore, we
expect the process to be replete with backtracking. [SHEIL83a] deals with the
language and run-time support features necessary to facilitate exploratory
programming.

3.7 EXPERIENCE 
"

During the past year we built two example prototypes; they are described in
subsection 8 of this report. Both were built following our proposed
prototyping lifecycle and construction methodology as much as possible. These
are some lessons we learned from that work:

o The proposed prototyping lifecycle appears to describe the process in a
useful way. The traditional waterfall description of the software develop-
ment lifecycle,[BOEH83, HAMILTON83] is criticized because, although it
shows iterations between stages, it does not adequately reflect the
interleaving of stages. We have discovered that our four phases describe J I
distinct activities, not interleaved activities, and that these activities
are conducted in the order proposed. We conclude that we have partitioned
the prototyping lifecycle into big enough chunks, and that those chunks -.

cover the prototyping process. Therefore one can manage a prototyping
project successfully using the proposed lifecycle. In addition, this
lifecycle is an appropriate basis for future methodology work.

o White-box specification of prototypes is useful for both prototype builders
and prototype users. Neither builders nor users see the prototype as a
black-box monolith; both see it as possessing internal structure. More
importantly, user appear to see a hierarchical structure, but with
components at various levels in the hierarchy visible at the interface --

between themselves and the prototype. When builders use a white-box
specification technique, they apparently can design a prototype that shows
users a structure that matches the way those users want to discuss the
system during prototype exercise.

o Objects appear to be an appropriate paradigm for the prototype's r
components. Builders of prototypes, as opposed to product software that
must perform efficiently, apparently think in terms of objects. When
objects are available for prototype construction, the translation of the
structure in a builder's head to the prototype program's structure is an
identity transformation, which requires less effort to do than a more N
complicated transformation. In addition, when builders capture users' Z
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concept of the structure of the system under study, users and builders do
discuss the same set of objects. This localizes a change to one or very -
few objects in the prototype, resulting in easily modified prototypes.

Section 8 contains the details that substantiate these tentative conclusions.

3.8 FUTURE WORK

A prototyping life cycle implies a collection of methods for each phase of
that life cycle and for transitions between phases. Here we present some of
the tasks that remain to be done in developing that complete collection of
methods, in the order in which we will attack them:

o Construction Methodology: Our proposal for a prototype construction meth-
odology combines an operational approach to requirements specification that
is "... relatively new and untried.. ." [ZAVE85] with an object orienta- - -

tion that has succeeded in development methodologies ([BOOCH83], the
Symbolics environment) but has not yet been tested for requirements
specification and investigation. In particular, subsection 2.3 argues that
most people mentally partition a system's behavior into the same conceptual
modules, and that a prototype builder can capture that unique partitioning.
This uniqueness conjecture was influentail in selecting an operational
approach, and must be tested extensively. Some initial testing leads us to
believe that the uniqueness conjecture is too strong, but that the builders

P S and users of any particular prototype can agree on a partitioning. The
question of whether there will always be objects in a software base to
realize that partitioning must be examined carefully.

Our task, then, is to validate that this construction methodology is
appropriate for prototyping. We plan to accomplish the task by applying

.~ the methodology immediately in constructing prototypes of the RaPIER
prototype engineering environment and some application systems. These
tests will validate whether the idea of an operational requirements
specification is as useful as Zave claims and as our survey of requirements
documents produced in Honeywell indicates, and whether objects are the

L- correct constituents of such operational specifications. We are certain
that this methodology needs extensive refinement. Our practice with the
methodology will lead to those refinements.

We have not considered ir-heritance in our object model. We must investi-
gate whether we need the inlheritance component of the object model and, if
we do, how to implement it in Ada with the aid of a software base
management system.

o Execution Methodology: Our next concern is the execution methodology. Our
task is to develop procedures for insuring that prototype execution is a
process of systematic experimentation rather than hacking. We suspect that

'" systematic experimentation will be facilitated by scripts of the necessary
interactions between a user and a prototype. We must validate that
conjecture and, if it is true, develop principles for developing such
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scripts. If the conjecture is not true, we must propose another prototype
execution approach and develop methods for carrying it out. We must also
develop an appropriate set of measures for ensuring that prototype use
leads to answers to the questions posed during requirements analysis.

-* ~o Experiment Design: If prototype execution is to be a systematic experiment ',.-

rather than hacking, the experiment must be designed. We know that
experiment design affects prototype construction, since the prototype must
be modifiable in those areas where experiment will take place. Experiment
design affects prototype execution in that the execution will be controlled
by the experiment. We think that requirements analysis and experiment
design should be conducted at the same time, since the experiment will test
those aspects of the requirements which were questioned during requriements
analysis. Our tasks are to develop experiment design techniques and
determine when experiment design should occur. Experiment design tech--
niques includes criteria for knowing when to stop the experiments.

*Methodology for the requirements analysis and incorporation phases of the life
* cycle will be considered further in the future.

Incorporating Prototyping Results: The "burning question" in the incorpo- I
ration phase is mapping from the formalism of the prototype to the
formalism of the engineering response. Work on this question is outside
RaPIER's current scope, for technical and funding reasons explained in
subsection 3.4. Therefore, we will develop some informal methods for
assuring that the results of the prototype experiments are reflected in the
final engineering response. These may be checklist techniques. Technical
considerations militate against developing a formal mapping at this time;

* however, an approach to a formal mapping might be developed.

o Requirements Analysis: On the one hand, deciding which requirements to
investigate by prototyping is just another case of the general problem of
deciding which requirements are not well enough understood to proceed with
design. Our task here is to monitor general work in requirements analysis
and adopt criteria and methods from that work. On the other hand,
requirements analysis prior to prototyping Is also concerned with deciding
which requirements can be profitably prototyped; that is, which require-
ments will developer and user be better able to discuss with the help of an
animation. Our task here is to develop an approach to answering this
question.

* Here are some miscellaneous methodology problems which must be solved before
* the RaPIER system can truly meet its goals:

o Domain Specificity: We belive that rapid prototyping is easier to achieve
in a domain specific prototype engineering environment than is a general
purpose prototype engineering environment (NEIGHBORS8O3. To test this, we
must select a domain for practice and pilot projects, conduct a domain
analysis, and, based on that analysis, develop or acquire a collection of
domain specific reusable software parts. We must also identify the domain
analysis techniques necessary to transfer the RaPIER prototype engineering
environment to a new domain.
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o Prototyping In the Development Life Cycle: Prototyping is not a "stand
alone" activity. It supports product design and development, for which
there are many accepted life cycle models; and it occurs in some
procurement process. Our task is to suggest ways to fit prototyping into
acquisition processes and general development lifecycles.

o Change Management: Changes in the surrounding system which induce changes
in ECS requirements are a major problem in developing embedded computer
systems (ECSs). These changes are likely to happen throughout the develop-
merit life cycle. Changing requirements is also a problem in any computer
system development effort. A requirements engineering methodology must

* - manage requirements changes. Some change management issues we must inves-
tigate are: (11 investigating requirements changes with a prototype that
was not built with those requirements in mind, [2) propagating changes to
the design and implementation phases, f3} distinguishing requirements which

* are likely to change by some special incorporation procedure, and 4}--
tracking changes.

" 3.9 END NOTES

A. "Including an explicit model of the environment has several advantages for
requirements specification. The reason that the interface between an
embedded system and its environment is complex, asynchronous, highly
parallel, and distributed is that it consists of interactions among a
number of objects which exist in parallel, at differernt places, and are
not synchronized with one another. Organizing these interactions around
the objects (processes) which take part in them is an effective way to
decompose this sort of complexity. Furthermore, assumptions and expecta-
tions on both sides of the boundary can be documented. The result is a
specification which is far more precise and yet comprehensible than could
be obtained by treating either side of the interface as a "black box,"
which is what happens when the environment is not modeled." [ZAVE82].

• B. In defending the proposition that operational requirements specification
" is an implementation-independent, "white-box" structure instead of a

"black-box," [ZAVE85] states:

"The conventional approach stresses that all behavioral decisions
should be made before any structural ones. This is an unrealistic
and even undersireable expectation, since internal structure inevi-
tably affects such external properties as feasibility, capacity,
behavior under stress, and interleaving of independent events.
Previous examples have illustrated this...

"Software can be made fault-tolerant only if it has meaningful
JbI components whose failure can be detected and whose bad effects can

be contained. To the extent that fault tolerance involves user ':.1
participation, external behavior cannot be analyzed or defined .'

without a virtual structure of components to which fault-tolerant
properties can be attached.
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"Even if we could develop adequate behavioral requirements free of
structural bias, there would be considerable difficulty in
specifying them formally, since most formalisms introduce internal ...

structure - if only to decompose complexity. Sets of axioms and
finite state machines... have proven Useful only for specifying
components of complex systems [or] only for specifying very limited ,%

properties of complex systems. This problem Is undoubtedly part of
* the reason why most conventional requirements are still written in

English.

"Another serious problem with the conventional approach is its
reliance on a strategy of top-down decomposition for design. Basic
methodological principles tell Us that implicit decisions should be
avoided, that if error-prone decisions must be made early then they
should be subjected to early checks, and that individual decisions-
should be as orthogonal to others as possible. Top-down design -

leads to decomposition decisions most of whose consequences are
implicit, makes the most global decisions earliest yet cannot
validate them until the very end, and causes the top-level decisions
to affect all properties of the system. It seems that top-down
hierarchical decomposition is an excellent way to explain something
that is already understood but a poor way to acquire
understanding...

"In the operational approach the primary decomposition of complexity
Is based on problem-oriented vs. implementation-oriented structure
rather than hierarchical decomposition. Even within an operational
specification, the most prominent structures tend to be discovered
by methods other than top-down decomposition. Although it is true
that hierarchical abstraction is often used within an operational --.

specification to defer details, these details must be resolved
before the specification phase comes to an end."

C. In motivating an object-oriented program design strategy, (BOOCH83a]
states:

"No matter what the particular application, the problem space is -

rooted somewhere in the real world, and the solution space is
implemented by a combination of software and hardware. . ..in the F17
problem space we have some real-world objects, each of which has a
set of appropriate operations....

"Whenever we develop a software system, we either model a real-world
problem entirely in software or, in the case of an embedded computer

10system, take real-world objects and transform them in software and r
hardware to produce real-world results. No matter what the
implementation, our solution space parallels the problem space.
... the programmer abstracts the objects in the problem space and
implements the abstraction In software.
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"Intuitively, it is clear that the closer the solution space maps to
our concept of the problem space, the better we can achieve ourSgoals of modifiability, efficiency, reliability, and
understandability. ... all things we know in the real world are
abstractions, and, if our solutions are distant from the problem
space, we must make a mental or physical transformation to the

real-world abstractions, thus increasing the complexity of our

Weacknowledge that i rnfrigtepooyeit ouinoine
design and implementation, partitioning of functionality among modules
will change. However, if an object-oriented development methodology is

* -. used throughout, some of the user- or problem-oriented objects in the
prototype may persist into the final System. Then, if both the prototype
and the final system are coded in the same language, some objects Zrom the
prototype may be reused In the final system.
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SECTION 4

A MODEL OF COMPUTATION FOR PROTOTYPING

This section describes the model of computation needed to develop
object-oriented prototypes and suggests one way of implementing this model.
As background for presenting the computational model for prototyping, this
section discusses some classical models. The ideas presented here result from
work on Task HI.6 and from Honeywell funded work.

4.1 PROBLEM STATEMENT

Programs are specifications of computations. Computational specifications are
meaningful only when interpreted In the context of a computational model.
Attempts to specify a computation without understanding its underlying
computational model usually result in errors caused by clashes between the
semantics of the actual model and the semantics the specifier assumes.
Computing with digital computers began with simple models for simple computa-
tions. As computations became more complex, more comprehensive models were
developed. Prototyping is a specialized task that will require a specialized

- model of computation. The model for prototyping is driven by the need to
modify portions of a prototype as it runs without affecting other portions of

Uthe prototype.

4.2 OUTCOME 2-

We used the results of the RaPIER methodology and reusability work to
". determine the requirements for a model of computation for prototyping, and

proposed a model of computation that appears to meet those requirements.

4.3 THREE CLASSICAL MODELS OF COMPUTATION

This subsection surveys three classical models of computation: the batch,
time-sharing, and transaction processing models. Each has shortcomings for

':S supporting prototyping. It was an analysis of these shortcomings for the new
demands of prototyping that led to the type-manager model proposed in
subsection 4.4.
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4.3.1 Batch Processing

The batch-processing model is the oldest model of computation. There is one
active agent in a batch job: a process acting on behalf of a single active
program. This process is not connected to any other entity; that is, the
process does not act on behalf of some user, or as part of some project or
department, and it is not accoutable for resources to some financial account.

In the middle 1960's, batch-processing systems began to process jobs for more ,
than one user at time, and processes began to be associated with a user or -

account. However, this association was for bookkeeping reasons and rarely
controlled the resources the user was allowed to have or the services the user - '
was allowed to request. The batch model is not comprehensive enough for
prototyping, since prototyping requires significant user-interaction not pos-
sible in a batch environment.

4.3.2 Time Sharing

Time-sharing is a method of using computers that allows many users and ".
processes acting on behalf of those users to interactively share a system and
its resources. When time-sharing became a general mode of computer use, we
discovered that the batch model of computation was too limited. Specifically,
users started to get in each other's way. When a process acting on behalf of
a user could access all the computer's resources, and when several processes
were active "simultaneously," limits were needed on what each process could
do. The driving question in defining a time-sharing model of computation was:
How are a computer's resources to be shared among many users whose activities
are interleaved?

For time-sharing, an operating system executive schedules the use of the
computer's resources among many users or user processes, each of which is
identified by some authentication entity. Each system has its own entity
definition scheme to use in authenticating resource-use by sets of users.(1)
A time sharing operating system is also capable of managing a dialog between .

users and the system. The dialog takes the form of user commands and system . - -

activity in response. Time sharing operating systems also manage the connec-
tion of processes to programs and users. On most operating systems, the model

* .: -

*(1) An authentication entity is an identifier set used for validating access
to resources and services. Some of the more common views of authentica-
tion entities are: .,.

* VAX/VHS Person.Group
G6M400 Person.Project.Type
OS/MVT Person.Account
Kultics Person.Project.Type.Ring.AIMLevel.category-cross ] ,--3
ALS-APSE Person.Project.Role.Tool
Unix Person/Group & Tool(Person/Group)
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is one login entity, one program. Some advanced time-sharing systems have a
stack model of programs that can be suspended and resumed. A few systems have
a model where one login entity can switch among many processes.

The time-sharing model, with its multiple processes, user interaction
capabilities, and resource control is closer to the needs for prototyping that
the batch model. However, the one user, one process, one interaction point
model of most time-sharing systems is too limited for prototyping. This is
true because, for example, a prototype builder may want to conduct simultane-
ous dialogs with a software repository, a PSDL processor and the prototype

• : - under construction. Although the builder will deal with only one dialog at a
time, all three must remain open concurrently.

In order to manage shared resources efficiently, time-sharing systems were
built with highly intertwined code and data. This intertwinwing makes it
nearly impossible to modify portions of the system without affecting all
users. For prototyping, one needs to modify parts of a prototype without
affecting other parts of that prototype. Thus a computational model for
prototyping must allow builders to construct prototypes from loosely coupled

* components, so that a prototype component can be modified without interfering
*i with other parts of the prototype under construction or use.

4.3.3 Transaction Processing

In a transaction processing system a relatively large number of users use the
system simultaneously. They make frequent event-demands (requests for trans-
actions) that require relatively small amounts of computation on a small
subset of the data potentially available to them. Many events take place
during one user session with the system. The questions driving the transac-
tion model of computation are: [i1 How does one attach those users to the
needed data efficiently and quickly? 12) How does one keep the state
information associated with a user when (s)he is not attached? 131 Who is the
user? What needs to be authenticated?

In both the batch and the timesharing models, a user is permanently attached
to a process and the process acquires, on behalf of the user, fairly static
resources that are validated at acquisition-time. This model of a
session-long proces-user connection is inappropriate in a
transaction-processing environment because the cost of creating a process and
attaching available resources is too high for short-lived processes, compared I-%
to the cost of queueing users to a free process. The alternate of having the
required number of processes available at all times, whether in use or not, is
not feasible because most operating systems used in transaction-processing are
unable to keep the required numbers of processes in existence simultaneously.
Even if processes were free, the time-sharing model would not solve the
transaction-processing resource usage questions because the granularity of
control provided by time-sharing operating systems is not fine enough (e.g.,
file rather than record/fields). Therefore in transaction processing, an
event causes a user to be attached to a process and resources attached to that
process based on what the process will be doing.
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Both machines, for example a particular automated teller-machine, and individ-
uals need authentication. Initial authentication and additional authentica-
tion for particular transactions raise a need to create and change authentica- !
tion. Tying authentication to processes, as is done in time-sharing, is not a
solution to resource-control in transaction-processing because users share
processes serially. Instead, since not very much information about users or
what they were doing needs to be saved between transactions, state is
associated with the users' physical access line and referenced by the attached
process when making authentication decisions.

To summarize, in transaction processing, processes and their system-mediated "".
resources and services are relatively static while users and low-level needs
are dynamic. The transaction-processing computational model, therefore, is

* one where there are static processes, but transient users and resource needs.
A proper transaction processing model is thus one where users and their
authenication are shared among processes. State-information appropriate both
to what users are doing and to their current authentication is attached to a
process for the duration of execution of a transaction. That state is then
saved until the next need for computation, while the process is reassigned to
other needs.

While transaction processing systems appear to provide a wide variety of
displays and specialized user-input paradigms thus being a good platform for
prototyping, the variety is illusory. The driving concern in
transaction-processing is efficiency. There are tens and sometimes thousands
of people at terminals. What is displayed, and how input data are processed, .21
is largely "canned;" there is no room for modification without adversely
affecting efficiency. In prototyping, the concern is modifiability; not

* efficiency. Thus the transaction processing model of computation will not
support prototyping well.

4.4 THE CONCEPTUAL MODEL "

This subsection discusses our requirements on a model of computation for
prototyping and proposes a model.

4.4.1 Requirements for the Prototyping Model

We have already concluded that prototyping cannot be supported well by a
batch, time-sharing or transaction-processing model. An acceptable
computational model for prototyping must address the shortcomings of the
classical models of computation in the face of new demands. Creation and use
of prototypes place different requirements on the model of computation.

There are three separate interaction points between a user and a prototype in
execution:
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o User interaction with the prototype itself;
o User interaction with prototype's environment;
o User interaction to change the prototype.

Each user interaction manipulates a portion of the total computation. In
defining a prototyping model, we are concerned both with providing the user
with a comfortable view for carrying out the three interactions cited, and
with what a prototyping system can support. In addition, the prototype
interacts with other programs that comprise its environment. That environment
may also have to be modified to demonstrate alternatives in the prototype.
Therefore, a model of computation for prototyping must support easy interac-
tion with the prototype, modifying the prototype, and modifying the environ-
sent in which that prototype is executing.

RaPIER prototypes will be built from generic reusable software parts that are
77 customized for a particular prototype by such means as parameters. These

computation must include the notions of object and of inter-object communica-

tion. The model's implementation must support both these notions.

Modifiability is the issue that "forces the model" in prototyping, as
resource-sharing forced the model in time-sharing and transaction-events
forced the model in transaction processing. Users must be able to modify a
prototype system rapidly so that they can then observe alternatives. When a
change is made in a prototype, the rest of the prototyping experiment must not
try users' patience with too such repetition of things already seen. Thus, a
prototyping system be structured so that:

- o prototypes can be built quickly;
o already built prototypes can be rebuilt quickly;
o rebuilding while a prototype execution is underway does not require

restarting a prototype experiment from the beginning.

. - In contrast to most other types of systems, where efficiency is a prime driver
and design choices are made that reduce the system's generality and
modifiability, prototyping requires modifiability and generality In order that

. " prototypes can be built and changed quickly. This need implies that most
operating systems and system software, being designed with opposite objectives
to those of prototyping, are not well suited for prototyping.

4..4.2 The Model

Systems that can be modified rapidly will have two characteristics in common: .'."

{11 they use well-defined objects; [2} those objects are "glued" together in a
small number of well-defined ways with glues of appropriate binding-strength.
Thus, a prototyping model of computation will have to define what objects are
and how objects are connected/separated.

p.
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4.4.2.1 Objects "'

In order to be able to replace user-visible objects "at will" during prototype
execution without causing havoc, those objects must be defined and connected
in a special manner. Both code and data will have to be replacable during
prototype execution almost without restriction. This "late binding" capabili-
ty can be provided by a facility known as "dynamic linking." Languages such
as Lisp support late binding/dynamic linking naturally. Some of Lisp's
characteristics that provide this support are interpretation, code and data
with similar representations, dynamic scoping, and user-transparent multiple
call-targets. Others languages such as PL/I and Ada can be dynamic in

appropriate operating systems environments such as Multics and R1000. Charac-
teristics of other languages, such as FORTRAN, make change/replacement nearly
impossible. However, late binding is not enough. One needs to be able to
unbind and rebind both code and data where appropriate. 7

The organization we recommend for prototype programs, to maximize both reuse
and modifiability, is that of a collection of typed objects, with
type-managers responsible for all operations performed on the objects. There
must also be minimal linkage between various types of objects; what linkage
there is must require little or no knowledge by either the programmers or the
run-time system of the types of objects being linked.

A type manager model does not necessarily imply the existence of a run-time
type-manager that examines and manages all messages between objects, or the
particular developmental style this forces. Type managers can be implemented
in at least the following ways:

o A program executes "send <message>" and an object is forced to do something
specfic to determine if it wants the message and to receive it.

o A program executes "send <object> <message>", thus specifying what object
picks up the message.

o A program executes "send <method> <cmessage>", thus specifying a set of
objects that may pick up the message.o A program executes "send <type-manager> <object> <message>", thus selecting

objects in a two-level name-space.

o A program executes "call <type-manager> <object> <message>", thus achieving
the same as above, but with much less run-time overhead.

Note that the last alternative is similar to the conventional call-return
programming language style.

One of the key concepts in implementing any type-manager model is whether the
number and kind of operations is frozen or evolutionary. By frozen, we mean ,.,

that the number of operations each type manager manages is fixed, and that
each operation's number and types of parameters is also fixed. By evolution-
ary, we mean the type-manager for a single object handles a varying number of !.

operations, not all of which need to be specified at the same time, and that
the number and types of parameters may vary. It is possible to have a
fixed-set of operations for checkability plus a variable-set for
extensibility.

42 March 1986

". .-, ...... ... ....-.......-....... ........... -...... .... -.. ,'--.... . .... -'"



A Model of Computation for Prototyping

Inheritance of properties and operations, such as is found in Lisp flavors and
SMALLTALK objects, increases the speed with which prototyping software can be*l built and altered by allowing new objects to be built as specialized or
combined forms of existng objetcs. Our prototyping model uses Ada's generic
ability for its inheritance mechanism and Ada's overloading-resolution ability
to make the proper linkage between routines.

We will assume that any object on which an operation is to be performed will
either be operated upon, or an exception will be signalled if the operation 51
cannot be performed. That is, we assume there are no resource authorization
contraints. Objects or references to objects are passed to their
type-managers, which perform the actual operations. Our assumption is
Justified because prototyping is performed in a single user or small
cooperating group setting where there is no willful bad code. Thus only
authorization to detect accidental errors is required.

., ..- Here are some open questions: Should objects be active (for example, tasks or
processes) or passive (for example, subprograms)? If they are active, are
they to interpret aribitrary messages, and handle them in similar ways to Lisp
flavors, or should they handle only defined operation calls? What is the
exact style of inheritance; how similar will it be to SMALLTALK's hierarchy or

Lisp flavors' lattice?

a

lo....

.9

Honeywell Computer Sciences Center 43

r~r



• * --Final Scientific Report: RAPIER Project (Contract No. N00014-85-C-0666) ,. ,,.

4.4.2.2 Glue

For prototype development, the model must also allow the developer to glue
together reusable parts rapidly. "Glues" include:

Paradigm Examples Remarks

binding-units any-linker ' ,-
dynamic-linking snobol ,lisp ,Multics
command-files Unix,VM/CMS
parameterized-full-programs Multics-EMACS & -Compose
inheritance-from-parent Unix-commands
inheritance-from-component Ada-with, lisp-flavors
embedded-semantics-in-data strings-as-pathnames
trapped-instructions missing-floating-point .
virtual-memory Multics-fgbg
common-files GCOS8-talk
input-output-streams Multics-14E27A
interposed-entities Multics-cu_$cp
messages Thoth-Godfather
inter-process-signals lisp- throw-catch
intra-process-signals Multics-cleanup
expection-propogation Ada-exceptions
active-functions Multics-underline
generated-from-data Ada-repository-menus database contents
inter-language-calls FORTRAN-Numeric-constraints j
generic-instantiations Ada-generalized-stack
built-from-high-level-descriptions RaPIER-PSDL
macro-processed-special- form SNOBOL- implementation

It is an open question how many kinds of glue RaPIER will need to support,
given the type of components we plan to use. It is also not clear how much _
glue needs to be visible and accessible in the prototype execution environ-
ment. Nor is it clear how tightly the construction and execution environments
must be bound together.

4.5 IMPLEMENTING THE MODEL

The major notions in the computational model we propose for prototyping are
reusable composable objects, type-managers and late-binding. This subsection
discusses implementation support for these notions. L16 .

4.5.1 Objects

The Ada package will implement the object notion. RaPIER will contain a
software base of reusable parts that are Ada packages. There may be packages ., "'
in the software base that were designed and implemented outside of the RaPIER -
system, but those packages designed specifically for RaPIER and prototyping
will be written using the reusability guidelines contained in section 6 of
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this report. We expect object-oriented Ada packages written according to the

reuabiityguielies o b resonblyeasy to find, understand and customizefor use in a particular prototype. In addition, we expect their
object-orientation to help ensure their separation from other factors in their :

environment of exectution; this separation wall enhance their modifiability.
The low-level building blocks from which prototypes are synthesized will have

the following characteristics:

- -o Minimum dependency (in the specification) on other packages.
., o Types, constants, and exceptions are externally visible.

o No externally-visible data-objects.
" o Where appropriate, internal data-object manipulation synchronized (e.g., by

tasks) to avoid inconsistent operations.
o Manipulable data-objects will normally be created and destroyed by routines

in the unit providing the service; thus every low-level package will have
creation/destruction routines.

o Low-level packages will be defined in a straightforward way without special
optimizations for one attribute (e.g., storage) at the expense of another
(e.g., time).

o Reusable parts will be table-driven instead of logic-driven to enable their
insertion in wide variety of prototypes.

Prototypes may also contain large, table-driven components (for example, a
text-formatter) that will not be built from low-level units. They may be

bound-units, that is object code, or be written a non-cooperating language.
These large components will also be catalogued in the software base and will
be incorporated into the prototype during the build process. However, we do
not expect them to be catalogued in the same way as reusable Ada objects,

.. .since their incoporation at the object-code level rather than the source-code
level will require different information from that used to incorporate Ada
source objects.

4.5.2 Glue

Medium sized modules will be synthesized from lower-level components based on
a PSDL specification of function and behavior. These units will be glued
together using Ada's normal calling conventions. The main-program will also
be synthesised by this method.

The large, table-driven units will require a different form of glue. These
units will glued by dynamic linking, calls though the command processor, and
by parameter files of data.
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" '4.6 FUTURE WORK

Different tasks require different models of computation. Prototyping requires F
a model of multi-task interaction, and one where developed components or parts
of components can be quickly and easily replaced during prototype execution.

, The effects of that replacement must be minor, and each effect must be known
at the time of the replacement.

The work needed to realize the proposed model of computation includes:

o Complete definition of the model. This section mentions open questions .y-.
about the nature of objects, about inheritance and about glue types. These --

questions must be answered before the conceptual model is complete and
before a complete implementation of the model can be proposed.

So PSDL to Ada mapping. We must investigate how to map PSDL to Ada. While
the mapping appears to be straightforward when there is only one type of
object, and objects do not interact, it is not clear how objects should be
mapped when there are interactions, such as that between a database and a -

user-interface menu.

o Component Generality. We must discover what level of generality is
adequate for prototyping in a particular environment. While there is good
data in some areas, for example, PL/I in a multi-user resource-sharing
environment of screen-oriented character-terminals, we know of none for Ada
in todays bit-mapped, distributed environment.

o Run-Time Model. We must investigate what is the best run-time model for
supporting type-managers in an Ada environment that requires dynamic i
changes to running prototypes.

- o Glue. We must characterize the glue types needed in RaPIER. We believe
that using only one kind of glue is inadequate. We do not yet know the $1
characteristics of our target environments well enough to predict which
glues are right, either for initial prototype construction or for modifica-
tion during use.
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SECTION 5

SOFTWARE BASE - CLASSIFICATION SCHEME

This section describes initial work on software parts classification. The
work consists of both the classification scheme and a discussion of
use-scenarios involving a software base browser and a software base that
supports our scheme. We have also suggested an implementation strategy. The

' work on the software base is intended to complement work done by International
Software Systems, Inc. (ISSI) under separate contract with the Office of

S-. Naval Research and to enable us to specify Honeywell's requirements to I5I.

K 5.1 PROBLEM STATEMENT

The ease of locating a potentially reusable software part is a major incentive
for the user to want to search for and reuse such a part. Many of today's
software repositories (for example the Ada SIMTEL repository on ARPANET) are
not easy to use especially if the user is not familiar with the names of the
software parts they contain and cannot guess portions of some of the keywords
needed to retrieve the part. Modern database management systems especially
relational databases allow the user to retrieve candidate software parts
through the use of associative queries. This flexibility is provided by -'
putting some values in database attributes (for example name-of-author,
function, timestamp, or no-lines-of-code). This classification (flexible as
it has become) is based on the syntax of values in database attributes rather
than on semantics.

The classification of objects in modern object-oriented programming systems
such as SMALLTALK [GOLDBERG83] is more meaningful than database classifica-
tions in the sense that the system has generic hierarchies of objects that
have been built up based on semantics. But outside of the small set of
predefined objects which the original implementors of the system have
provided, it is not clear (as we shall explain later) that such small
object-oriented systems can be used unerroneously for frequent insertions and
deletions of software parts by multiple users. Our job has been to formalize .
a similar classification scheme for large, shared software bases.

H y.
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5.2 OUTCOME

We started this task by studying some of the existing software repositories
such as the Ada SI TEL repository. As mentioned earlier, those repositories
are organized by loosely classifying software according to functionality;
retrieval is based on keywords, partial-string matches, and the perusal of
listings of code and documentation. In a system for the rapid construction of '. ?
software using prototypes, there is need for a conceptual basis for
classifying software so as to guide the search and reduce retrieval time.

We also studied some of the new object-oriented systems such as the SMALLTALK
system [GOLDBERG83] and the Symbolics (SYMBOLICS84] Flavor System. Those -

systems are well-organized but small and not very well oriented for use in a :-
multi-user environment. We have pursued a similar classification scheme; this
time, it is based on formal specifications rather than on the intuition of a
single user.

We have also studied use-scenarios involving users and their interaction with
a software base browser. The study enabled us to define functional character-
istics of the software base browser as well as the interfaces that the
software base must provide in order to support those functions.

An approach to implementing our classification scheme is included in the
report. We note though that this part of the work was done in January 1986
using internal Honeywell funds.

5.3 INTRODUCTION ..-

Database management systems (DBMS) are useful to the business data-processing
community because they shield the user from the physical implementation of the
database. A user's view of the data can correspond to his/her view of the
real-world; it is then the duty of the DBMS to map such a conceptual view onto
the physical implementation of the database. Similarly, a Software Base
Management System (SBMS) should allow a developer to deal with conceptual
objects irrespective of their underlying implementations. As with data in a
database, the SBMS is responsible for mapping the developer's conceptual view
of an object to some physical implementation of the object at the appropriate Li
time.

We are interested in such an SBMS. Some of the major functional requirements
of an SBMS (for example configuration control) are discussed in [ONUEGBE85a]. '. j.
Another report [ONUEGBE85b] presents a methodology for classifying the '- *-

software in an SBMS; we call this classification scheme Behavior Abstraction.
Behavior Abstraction will work best in a fully-automated software library
where software is functionally specified and where such specifications can be . .-.

evaluated by some engine. -:4:

Since the technology for processing functional specifications has yet to
mature, we adopt a phased approach to implementing Behavior Abstraction. -
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Phase 1 consists of an SBMS that supports a semantic data model. The external
schema resides on a front-end while the SBMS is hosted on a back-end as in
Figure 5-1. The classification of the software parts is based on formal
functional specifications but it is a manual process at this stage. A
browser, a query language, and a high-level language for specifying the
behavior of prototypes all serve to interrogate the SBHS and to retrieve the
software parts for reuse.

RAPIER
SBMS FRONT END OTY

- BROWSER/QUERY COTRUCTION

OPROTO1YPE
I TOOL INTERFACE EXECUTION

OMI5CELANUS

* SBMS BACK END

*SOFTWARE PARTS

I SOFTWARE CONFIGURATION
MANAGEMENT

* SOFTWARE COMPOSITION

* TOOLS

0 MANAGEMENT DATA

Fil. No. 6-0368

Figure 5-1 Initial RaPIER Functional Architecture
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Phase 2 Includes all the features of Phase 1 along with automatic update of
the structural relationships in the SBMS whenever a software part is added or
deleted. This phase involves interfacing the SBMS to syntax-directed editors,

* compilers, and "parser-like" entry tools.

Phase 3 includes all of Phase 2 along with Behavior Abstraction. Software
classificaton at this stage is based on machine-processable formal specifica-
tions and is automatic. The user's interface to the SBMS is a catalogue of
abstracted behaviors, conceptual objects; the binding of Implementation to
behavior is delayed. The following benefits accrue from such a scheme:

o because of later binding of behavior to code, we achieve the kind of
flexibility that makes it easier to reuse designs/specifications.

o We support an object-oriented construction methodology at the front-end;
the user gets comfortable with a stable set of objects in the catalogue
rather than with the many constantly changing implementation names.

5.4 THE BEHAVIOR ABSTRACTION CLASSIFICATION SCHEME

A classification scheme that models user perceptions of module functions is
critical to the success of the SBMS. Previous classification schemes stress ""
loose groupings of software parts by their functions. For example, all
mathematical functions could belong to one group while logic functions get
grouped separately [EDWARDS77]. Keywords and partial string searches have
been helpful in retrieving modules so long as the user knows or can guess some
portion of the module's name.

The use of modern database management systems, especially relational
databases, enables a user to retrieve a class of software components '.hrough
associative queries EYEH84]. For example a user can retrieve all mathematical
functions that were written by a named author before a specified date so long
as those attributes exist In a database. The names of the modules that meet
the query specifications are then used during software construction.

Even though relational systems are a major improvement over the older •
cataloguing schemes, the structural properties as well as the semantics of
software modules are hard to describe using relations. For example, if the
category of trigonometric functions is a subcategory of mathematical
functions, there is no easy way to capture this in a relational database.
Improvements in the modelling power of databases, especially the semantic
models as well as advances in object-oriented programming, provide the impetus
for more powerful classification methodologies. We will discuss these below.
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A
5.4.1 Semantic Modelling and Object-oriented Classification

S Semantic modelling grew out of the programming language, database, and
artificial intelligence communities in order to improve the semantic expres-
siveness of databases and other information repositories. We will not dwell
so much on the expressive power of the semantic database models since these
are discussed in [HAMMER81, BRODIE81]. We will, however, discuss two
modelling concepts that are useful in the SBMS.

i. Generalization Hierarchies. A generalization hierarchy is one in which
classes and sub-classes are defined. A class is defined by a set of
attributes; all objects possessing those attributes are grouped together.
A sub-class is a specialization within a class. This age-old notion of
taxonomies was incorporated into data modelling in (SMITH77]. Figure 5-2
illustrates a generalization hierarchy for computers. MICRO, MINI,
MAINFRAME, SUPERCOMPUTER, are all sub-classes within the class of COMPUT-
ER. Similarly, WORKSTATION, HOME COMPUTER, and PERSONAL COMPUTER are all
subclasses within the class of MICRO. In a similar fashion, a behavioral
hierarchy for software parts can be modelled in an SBMS that directly
supports generic hierarchies.

a COMPUTERI

MICRO MINI MANFAE SUPER COMPUTER

WORSTATIONI HM CMUE PERSONAL COMPUTER

File No. 6-0369

Figure 5-2 A Generic Hierarchy of Computers
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ii. Composition Graphs. A software part may be a composite that references or
is made up of other software parts, which in turn may reference or include
other software parts, possibly recursively. Even though existing ki
databases (for example relational or network) can be used to capture the
composite nature of a software part, they do not have a direct way to
represent a composite object. For example, in the Symbolics Flavor System
(SYMBOLICS84J, a flavor is an object type and each flavor has a name and a
set of methods (a method is an implementation of the response to the set
of messages that an object understands). Bottom-up object-oriented
programming using the flavor system begins with a collection of reusable
flavors (objects); new flavors are built by combining more primitive ones.
Eventually, one obtains the appropriate objects to solve the problem at
hand. The Flavor Examiner on the Symbolics provides the means by which
the user traverses this composition graph in order to find potentially
reusable objects.

5.4.2 Building Prototypes With Reusable Objects

The concept of an object as a named computational entity with an identifiable i '
behavior is central to object-oriented programming. An object's behavior is
its reaction to the set of messages it "understands," where a message is a
request to initiate processing or provide information, and "understanding"
means possessing a defined response. Messages are akin to conventional
procedure calls with the distinction that the sender has no Idea how the
receiver implements its request. Inside the receiver, messages are handled by
directing further messages to other objects, and or by performing activities
CRENTCH82I. Procedure calls are commands to carry out specific algorithms,
while messages are requests _j accomplish some activity by whatever algorithm
is appropriate, where the object receiving the message decides what is
appropriate. Similar objects (i.e. objects exhibiting some of the same
behavior) constitute a class. The same abstraction mechanisms discussed for
databases are used to organize objects into a class hierarchy. .

We illustrate this using the Flavor System on the Symbolics 3600 LISP machine.
A flavor is essentially an object type; every flavor has a name and a set of
methods. A method Is an implementation of the response to one of the messages
an object understands. A flavor is similar to an Ada generic unit in many
respects. An instantiation of a flavor receives requests for services called n
messages and may also respond to those messages. A message has a name and '
appropriate parameters.

Object-oriented programming can be carried out top-down or bottom-up.
_ Top-down object-oriented programming comprises six activities(BOOCH83]:

1. Define an informal strategy for solving the problem at hand,

2. Identify the objects (nouns) in the informal strategy,

3. Identify each objects operations (verbs) in the informal strategy, 44
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4. Defne each object's interface: -- the services and information it offersto other objects, .J

5. Implement each of the objects

6. Implement the informal strategy as a program that uses these objects

In this case, an implementation is developed for each object needed.

Bottom-up object-oriented programming begins with a collection of reusable
software objects such as the SMALLTALK system objects, the collection of
flavors on the Symbolics, or a user's personal library. These objects are -"

well-documented, are usually reliable, and the system is usually
, well-organized. Objects for the problem at hand are built up by combining

more primitive (system or user-defined) objects. Eventually, the system
.- contains the appropriate objects to solve the problem at hand. Bottom-up

object oriented-programming is a natural way to exploit a software
repository's resources.

The situation with today's commercially available object-oriented computing
systems, however, is that they often contain well-known predefined objects and
objects which a single user, or a small group of uses have added. The RaPIER
situation is different. First, the SBHS must contain a large number of
software parts contributed by a large number of users (so long as the software
is written according to the reusability guidelines suggested in section 6).
Secondly, unlike in today's systems where there is often only one software
part per object type or class, an SBMS class may be populated with numerous
software parts all exhibiting the same behavior. A useful SBMS in such a
situation is one in which software parts can be automatically classified
according to some semantics. Also, the flexibility and speed needed for
building prototypes requires that behaviors rather than software part names be
incorporated into the Prototype System Definition Language, PSDL. This way,
designs are insulated from the insertions/deletions in the SBMS. The binding
of a software part to the behavior it implements takes place as late as
possible. When once the first prototype is built and its behavior has been

* exercised, further tuning may then occur and the user can then begin selecting
among software parts by including further restrictions in the PSDL.

5.4.3 The Classification Scheme in RaPIER

The Behavior Abstraction classification scheme [ONUEGBE85b] builds generic
hierarchies out of a set of functional specifications. This is similar to the
SMALLTALK object hierarchy. In the RaPIER however, each behavior class is a
formally specified abstract object. For each such abstract object, there can
be more than one alternative implementations. This is similar to the notion
of versions and alternatives in a design database[KATZ81. Discriminants are

* then used to restrict retrieval whenever the user needs one of those
implementations. The task of identifying which implementation belongs to ...

which abstract object is the task of a theorem prover or the human librarian. ',.
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In the next subsection, we will discuss the various phases of implementation
of the Behavior Abstraction classification. The following terms used in this
paper are now defined in the context of RaPIER and Behavior Abstraction.

Definition 1. A catalogue is the set of behaviors that can be attributed to
all of the components in the software base. In RaPIER's SBMS, a catalogue ' NV

consists of a set of generic behavior hierarchies.

Definition 2. A behivior is the state change caused by an object's response
to one of the requests it understands.

Definition 3. An object is a set of related messages. Each object type is
unique - for example "table manager," "window,"or "mouse". In the SBMS,
software parts which exhibit the same behavior are grouped as a class.

Definition 14. A message is a pair <object, request> where object is the name
of an object and request is the name of one of the object's behaviors.

Definition 5. Behavior Abstraction is the functional specification of objects
and their arrangement into generic behavior hierarchies in SBMS.

Definition 6. Delayed binding is the binding of an implementation of an
object to an abstract message <object, request>. Delayed binding is similar
to the retrieval of data in response to a query. When Behavior Abstraction is
fully implemented, abstract messages rather than implementation names will be
used in PSDL.

5.5 THE PHASED IMPLEMENTATION OF BEHAVIOR ABSTRACTION

5.5.1 PHASE 1 - MANUAL CLASSIFICATION

Figure 5-3 illustrates a possible architecture of RaPIER's SBMS during Phase 1
of the implementation. The back-end consists of a software base implemented
in an extended E-R model (for example the Entity-Category-Relationship, E-C-R
model developed at Honeywell extends the E-R model to include the notion of
generalization abstractions [WEELDREYER80]). The front-end consists of a
software base browser, query processor, and PSDL. Reusable software parts are
identified through browsing and querying; the names of reusable parts are then
incorporated into PSDL. We will discuss the major portion of the schema for
implementing the classification scheme in SBMS, the equivalent external schema
as seen by the user in the front-end, the software base browser, and the Y .
manual classification of the software parts. The PSDL component is being
defined and built by an independent subcontractor(1) and will not be described
in this paper.

(1) For information on PSDL, please contact Prof. R. Yeh, International I.
Software Systems Inc., 12710 Research Blvd., Suite 301, Austin, TX 78759.
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5.5.1.1 The SBwS Schemar en t

The schema of SBS is a very simple one. The entity type BEHAVIOR CATEGORY
-hich along with the relationship IS A SUBCATEGORY serve to represent the

ogenerc hierarchy in the system. BEHAVIOR CATEGORY has a one-to-many rela-: tionship with the entity type IMPLEMENTATION which represents the %6

Simplementation choices for each object class. IMPLEMENTATION entity type
along with the relationship USES constitute a composition graph. The entity
type INTERFACE represents the interfaces imported or exported by the various

"-"modules. Its attributes Include names of importers and exporters and the "

input and output parameters among others. These structures (for representing
the generic functional hierarchy and the code composition graph) are the most
important ones in SBMS.

- There are of course other entities such as those required to represent the
data structures, but they are not very important for the purposes of this
discussion.

The external schema is modeled using concepts from the Array Theoretic Model
(MORE81, ONUEGBE85a] instead of the ECR model. This is done in order to
support browsing. The Array model is a hierarchical data model in which
objects are represented as nested arrays. It is therefore easier to present
information in progressively greater detail as the user navigates the software
base.

The mapping from ECR to the Array model is straightforward. To see how this
works, we examine the schema of Figure 5-4 and 5-5.

.. ~...,

EXTERNAL
0 SCHEMA

(ARRAY MODEL)

SBMS INTERNAL
• SCHEMA•,

(E-R MODEL)

File No. 6-0370. -..

Figure 5-3 SBMS Functional Architecture for Phase 1
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The object BEHAVIOR CATEGORY is the major object in the database. It has a
unique system identifier, a name, the author's name, a timestamp (to say when
the object was efined and approved) and a toolstamp (to say what tool was used ~ 1
in producing the object). The following arrays are needed to help the user
navigate the generic behavior hierarchy (GBH) and are self explanatory:
immediate subcategory, immediate supercategory, all subcategory and all
supercategory. The array "functional specs"' contains the formal specification
of the abstract object.

COMPONENTOF

INTERFACES

Fle No. 6-0371

Figure 5-4 E-R Schema for SBMS Software Parts
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BEHAVIOR CATEGORY:

id:
author
timestanp
immediate subcategory
immediate supercategory
all subcategory
all supercategory
functional specs : / functional specification for the abstract object */
implementation :

L

IMPLEMENTATION IL

id:
name :
type : (PACKAGE I SUBPROGRAM I TASK)
tool stamp
immediate component
immediate dependent :
all component :
all dependent :
discriminants (if package)
version
timestaap
author
imported interface : /* implementation specific specifications */
exported interface :

}" . ';.

INTERFACE (especially package specs)

id:
-" .name:

specification : /* implementation specific /"
immediate exporter :
immediate importer :
all exporter :
all importer :
timestamp :
toolatamp :
version

Figure 5-5 Array Model Version of Fig 5-4"
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The behaviors of software parts will be formalised. The array IMPLEMENTATION '
is the list of all implementations of an abstract object. The attributes of
IMPLEMENTATION include id, name, toolstamp, version number, author, and other
arrays which help the user navigate the composition graph (immediate compo-
nent, immediate dependent, and so forth). The discriminants consist of those
extra specifications that make the implementation different from the generic %-
functional specs. Such discriminants include specifications concerning the .J

environment, performance, reliability, and so forth. In Phase 1, the
discriminants will be also be captured as database values (in order to support
queries); eventually, however, they may be formally specified.

The implement ions that will be classified will be Ada packages written
according to the guidelines in section 6. Users who want to add tasks,-
procedures, and functions into the library must package them in order to make-
them visible. Users can, however, browse through other modules that are

* components of packages.

5.5.1.2 Browsing

Browsing in SBMS consists of navigation and probing (MOTRO84] through the
generic functional hierarchy and the composition graph. As soon as the
browser is invoked for use in RaPIER, three major contexts are established as
shown in Figure 5-6a. The first is the context for BEHAVIOR CATEGORY, the -

second is the context for IMPLEMENTATION, and the third is for INTERFACE. As
a user browses through the hierarchy of functional specifications, data is
displayed in a window as shown in Figure 5-6b.

In order to display data concerning a particular implementation, the user
would have to pick on the name of a particular implementation in the BEHAVIOR
CATEGORY context. In order to display information concerning a particular
interface, the user has to pick on one from the IMPLEMENTATION context.

The windows described In Figure 5-6a and 5-6b are used for illustrating the
concepts only. In practice, browsing in RaPIER is within the larger context
of the Construction Environment, so the windows do not appear exactly as shown

* in the figures.

58 March 1986

V1 r



Software Base -Classification Scheme -

FUNCTIONAL CATEGORY:

P IMPLEMENTATIONS:

INTERFACES:

COMMANDS:

Figure 5-6a SBHS Query/Browse Display Windows

FUNCTIONAL CATEGORY:
* id: 001 -

specs : "table manager"
implementation hash, tree,.. .

IMPLEMENTATION:
Id :0011
name : "binary treejtable"
type : PACKAGE
tool stamp waterloo C

INTERFACES:

COMMAND: F

* File No. 6-0372

Figure 5-6b SBMS Display -an Example
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5.5.1.3 Classification

We will concentrate on building domain-specific libraries in order to simplify
the initial RaPIER and to help us gain experience. Classification in RaPIER
is a bottom-up process; a human librarian reads the functional specifications
of the various software parts and decides which generic object classes should ,
be created. It is also then librarian's responsibility to group
implementations of an abstract object together. The librarian also builds a
generic hierarchy of the abstract objects. The rules for the classification . -

*; will be given later in this subsection. Also, for the composition graph, the
librarian would have to read the implementations in order to identify the call
or "with" chain of the Ada code. (This is a tedious process!)

The following rules guide the classification.

Rule 1: A behavior category B is said to be a subcategory of another category
A, iff A inherits some or all of of B's messages. For RaPIER, Inheritance
applies only to the abstract objects and is used mainly for classification;
since this is not an attempt to build a programming environment into SBMS, the
concrete inheritance by the various implementations only helps the user of the
browser to traverse the Composition Graph discussed earlier and has no other
implications. The hierarchy of abstract objects constiutes a partial ordering
of behaviors and the discipline of Behavior Abstraction is the construction of
such partial orders.

Rule 2: An implementation is said to belong to a behavior category (abstract
object) iff there exists a homomorphic mapping between the implementation's
specification and that of the abstract object. A theorem prover can be used
to enforce this [GUTTAG78], otherwise the human librarian would have to make
that judgement. For example, if one implementation of a stack uses an array
and another uses a list implementation, the theorem prover would have to
establish the homomorphic mapping between each of these implementations and
the generic object "stack" in order to classify those implementations as
objects of type "stack." A future paper will present the two rules stated -
here in greater detail and present a classification of some embedded-system
software using those rules.

To summarize, browsing in SBMS consists of navigation and probing of a generic
functional hierarchy and a composition graph structure created by the
dependencies among software parts. In Phase 1 of the implementation of
Behavior Abstraction, a human librarian loads the database manually.

5.5.2 Phase 2 - Semi-Automatic Updates

We noted earlier that the composition graph of the SBMS is very tedious to
update. Phase 2 implementation consists of providing interfacing the SBKS
with an Ada syntax-directed editor interface so that the relationship
HAS COMPONENTS can be automatically updated. Also, a stand alone tool which
uses the symbol table of a compilation to update the database should be W rA
available after Phase 2.
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The choice of the appropriate node in the functional hierarchy for classifying
the part is still a manual process though.

5.6 PHASE 3 - BEHAVIOR ABSTRACTION

This is the full automation phase. Both the functional hierarchy and the
composition graph can be automatically updated and the correctness of a
classification is enforced using a theorem prover. (The use of a theorem
prover to help in the specification and manipulation of abstract objects in
databases is being studied at this time [KEMPLE86]) Because the functional

%hierarchy is almost fully installed at this stage, there is a basis for

inserting, deleting and retrieving functional specifications.

* .. Browsing becomes more interesting at this stage since we can now browse using
the semantics rather than the syntax of the software. Examples of interesting

- new primitives for the browsing include:

1. get implementation(specification). This serves to retrieve any
implementation that has the behavior specified. The construct can be

* further restricted with "any" or "first" or "all."

2. probe(partial specs). Just as with partial string match of keywords, this
construct retrieves all (for queries or browsing) or a firstimplementation that is similar in some way yet to be defined to the

behavior specified.

We note that Behavior Abstraction is almost without any risk in RaPIER since
the prototypes are disposable. This makes RaPIER a good research vehicle for
such a concept.

5.7 INTERFACES

This subsection discusses various other features needed for browsing and
suggests a programmatic interface to support the browsing tool. This work was
completed earlier; it assumes that ISSI's SBMS is being bullt on top of an
advanced relational database management system [ROUSSOPOULOS85]. It is possi-
ble that ISSI's underlying database has changed, but the underlying browsing
concepts are still the same. The low-level procedures needed to support
browsing are included in an appendix at the end of this section.

"- *" 5.7.1 Introduction

.. The first kind of interface, the browse-, enables a user who has little or no
knowledge of the data or its logical organization to quickly "shop around" in
order to identify objects of interest. The browser must display information
concerning the logical organization of data as well as the data itself. The
information about the logical organization enables the user to discover the

Honeywell Computer Sciences Center 61



.-

Final Scientific Report: RaPIER Project (Contract No. N00014-85-C-0666) ..

,

structure of the software base and to follow promising trails. The browser
must allow the user to quickly update the attributes of objects, in the same
way as a screen-oriented text-editor allows a user to edit text files and ,-, *..,

receive immediate results. The browser must be forgiving of a user's
forgetfulness or inability to express a request precisely. For instance, the
user should be able to modify and reexecute queries. Finally, the browser
must respond in non-trivial ways to a user's request. For example, if a user
asks for a compiler and cannot find one, the browser should tell the user

about the compiler generators in the software base.

Another interface, the query language, allows the user to interrogate the
software base in an ad-hoc non-procedural fashion. This document does not
discuss the query language since it has already been defined as SQL-like by
International Software Systems, Inc. (ISSI) of Austin, Texas which is
responsible for developing the software base.

The programmatic interface is a set of interface procedures for accessing the

software base from a user's program. The RaPIER front-end being developed by
Honeywell will be hosted on a workstation which supports Lisp and Ada. So the -

software base interface procedures will be called remotely from LISP and Ada
programs. We assume problem-free communication between the front-end and the
software base. ."-

This document is not a specification of the user-interface requirements for
ISSI's software base. It merely states RaPIER's needs and so complements
ISSI's own requirements. At the time of writing, we assume that ISSI's
software base is an enhanced relational DBMS and that the reader of this
document is familiar with such terms as relations, tuples, attributes,
cardinality, and so forth. The next two subsections discuss the browser and .- ,.
programmatic interface requirements. The requirements are specified even more
tersely using Honeywell's WELLMADE [BOYDT8 language in the appendix to this
section.

5.7.2 The Browser

The browser is a program that allows the user to have an interactive session
with the database. We assume that the user is not familiar with the contents
of the database, so the browser must be easy to use and thus allow the user to F
quickly understand the structure of the database and to follow promising
trails. We assume that the browser can display or receive data from a
screen-oriented graphics terminal/workstation. We also assume that screen
management routines for scrolling the display up/down, for windowing, for
graphics, and for editing input data are available to the browser software.

5.7.2.1 Features Needed for Browsing

In order for a naive user to browse quickly through or to update the database,
the browser must have features that are analogous to those of a screen editor
such as EXACS [STALLMAN81]. We will suggest those features without necessari-
ly suggesting an implementation approach.
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1. Editing Capability. This allows the user to directly modify data that is
dplayed on the screen much In the same way as one modifies text in an

editing buffer- Crisp commands to enable the User to save the buffer,
undo previous updates, or jpya specified modification to more than one
tuple of a relation should be provided. We recommend that the update
rights be reserved for the librarian (or the group of individuals
performing that function) in order to avoid chaotic updates.

Scrolling of the data on the screen will also enable the user to "hop" .-
-. around until information that is of interest is found. Scrolling is up orV

down, a tuple at a time or a screen-full of tuples at a time.
[STONEBRAKER8'41 discusses an implementation approach that would make this
possible. Some of the editing capability discussed here are already
available in some of today's form-based query interfaces.

2. Query Modifications. This feature enables the user to recall a previous
query, modify such query, and reexecute it. For instance, If a user
issued a query, "FIND ALL MODULES WRITTEN BEFORE 1980"1, and modified it
to, "FIND ALL MODULES WRITTEN BEFORE 1975"1, the immediate effect would be
to probably lessen the number of module names in the buffer. If the user
changes 1975 to 1982, then the number of tuples could be larger than for
the two earlier forms of the query.

3. Quick Navigation. With relational query languages navigation is achieved
by issuing join queries. Crisp ways of navigating should be provided to
enable the user to follow relationship chains. For example, in a
hierarchical schema, the user should have quick ways of going from parent
node to children nodes and vice versa.

* .- %

*.. ~ 4. Context Switching. Two kinds of context switching are useful. The first
kind is analogous to the use of buffers in a text editor. It should be
possible to issue more than one query, direct the results of each query to
a different buffer and manipulate the buffers as needed.

5. Probing. Sometimes, the user has only partial knowledge of the needed
object; if the database has deductive reasoning capability, it is still
Possible to satisfy such partially formulated requests. The least
requirement we place on the software base in this regard is to do
partial-string matching against keywords.

To some extent, some of the features discussed here have already been
implemented in one form or another by some researchers or computer software
vendors. For example, the forms facilities that are offered with some DBMSs
have some features of a browser. The Flavor Examiner facility on the
Symbolics 3600 family of computers is a browser of a sort.

Honeywell Computer Sciences Center 63



Final Scientific Report: RaPIER Project (Contract No. N00014-85-C-0666)

5.7.3 The Programmatic Interface

The programmatic interface provides the means of communicating the results of
a retrieval request from the DBMSs buffers into the user's program buffers.
It also provides the means of communicating update data from the user's

. program back to the DBMS.

A user's programs submits retrieval requests in the form of a pre-compiled or
raw query; the DBMS processes the query and stores the results in its buffers. .
At this point, the transaction becomes a so-called conversational transaction.

. The user's program submits a buffer variable to be bound to the DBMS's buffer.
-" Assuming the DBMS sets the cursor to point to the first tuple, the user's
. program should then be able to fetch the first tuple, fetch the next n tuples

up or down from the cursor, move the cursor to a certain position in the
buffer, restrict or enlarge the number of tuples in a buffer by issuing a new .
predicate, update tuples in the buffer, ask the DBMS to store back the
contents of the buffer, and open or close the buffer. An example of this kind
of communication is that between an EMACS buffer and an EMACS window.

Most of these features are included in the appendix as well as in
[ROUSsOPOULOS85]. [STONEBRAKER88] suggests that line identifiers be used to

* identify tuples in the DBMS buffer. We suggest that tuple numbers be used
" instead because we are not sure that there will be a one-to-one correspondence

between a line and a tuple. This way instead of issuing a request such as
"FETCH Line #20 ," the user's program issues "FETCH Tuple #20." It is up to -

the DBMS to order the tuples in its buffers(LYNN82].

5.8 FUTURE WORK

The first RaPIER prototype should include the Phase 1 implementatin of the
classification scheme. To this end, we expect to demonstrate some of the

-" concepts by the end of 1986. This demonstration will include the browser. We
, will evaluate the prototype and incorporate any desirable changes to the

scheme. Phase 2 implementation will be pursued if funds are available. Phase
3 implementation will depend on the results of further research. An automated
Rapid Prototyping system such as RaPIER should, however, evolve toward an
automated classification scheme.

.

.• ~,.::-:
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5.9 APPENDIX

(i) TYPE DEFINITIONS

package SB INTERFACE TYPE DEFINITION is

This package defines constants and types used
-- in main program and other packages.

type RELATION ID is LONG INTEGER;
type TUPLEID is LONG-INTEGER;
type SB PARSED QUERY TYPE is STRING;
type SB-RESPONSE TYPE is STRING;
type SB QUERY TYPE is STRING;
type ATT TYPE- is STRING;
type ADA CODE is STRING;
type SB SPECIFICATION TYPE is STRING;
type RESULT TYPE is (FAILURE ,SUCCESS);
type SB CLASSIFICATIONTYPE is STRING;
type SB -NODE TYPE is STRING;

" type SB CONTEXT TYPE is STRING;
type SBHELP REQUEST TYPE is SB QUERY TYPE;
type SB PREDICATE is STRING;
type SB CONTEXT TYPE is

RECORD
classification-name SBCLASSIFICATIONTYPE;
nodetype : SB _NODE _TYPE;
tup id : TUPLE ID;

*. ..-,

end;

* .-'.."
:
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(ii) BROWSER

procedure previous context (
in current node (
SB NODE TYPE I SB RELATION NAME ) ;
out SB context : SBCONTEXT_-TYPE );

Switch to a previous context.

procedure query eval ( in SBquery : SB QUERY TYPE; -

out SB_response : SB RESPONSE TYPE );

Evaluate the query and return the response. The browser should respond in a
non-trivial fashion to a user query. For example, if a user wants to browse

.. through a piece of code that performs quicksort and if the browser does not
find such a piece of code, the browser should inform the user about other
modules that perform similar functions-- there could be bubble sort packages.
As another example, a user may request to use a non-existent compiler; if the I.
compiler does not exist, the browser should inform the user about any existing
compiler generator in case the user wants to generate the compiler in
question. In short, there should be (at least) some "nearest neighbor" query
capability and some elementary inferencing as a first cut.

procedure list help ( in SB help request : SB HELP REQ TYPE;
SB context : SB CONTEXT TYPE;

k"- out SB-help : STRING ); "" .

List the requested help information.

procedure restrict_previousquery
( in previous query : SB QUERY TYPE

further restrictions : SB PREDICATE;
out SB response : SB RESPONSE TYPE );

Add further restrictions to a previous query. This should reduce the number
of tuples returned in response to the previous query.

procedure add don't cares (in previousquery : SB QUERY TYPE;
new don't cares : SB PREDICATE;

out SB response : SBRESPONSETYPE );
.-

Add more don't cares to a previous query in order to enlarge the set of tuples
returned in response to the previous query. This is the opposite of procedure
restrict_previousqueryo. "
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procedure browse code ( in code name: STRING;
Ptt naepeefcdout code : ADA-CODE ); b r s y

Put the named piece of code under the control of the browser; a user may then
Inspect the code and use attributes of interest for further browsing.

procedure list classification node ( in module name : STRING;
in name of classification scheme SB CLASSIFICATION TYPE;
out node- nae : SB CLASSIFICATION TYPE NODES );

Print the nodetype of a classification scheme of which the named module is a ,

member.

procedure list super types ( in (node type I modulename)
(SB CLASSIFICATION TYPE NODE I STRING);
out node names : array of (SB CLASSIFICATION TYPE NODE) );

aGiven the either the name of a module or the name of the classification node
type, return the names of the supertypes (nodes) for that node type or module.
This allows the user to go up a classification tree or lattice.

procedure list tree supertypes ( in (node name I module name)
TSB CeLASSIFICATION NODE TYPE- I STRING)

out node names : array of -SB -ASSIFICATION NODETYPE) );

- List the classification hierarchy from the topmost nodes up to the specified
*' node or the node of which the specified the specified module is a member. -

" . procedure list sub types ( in (nodetype I module-name)
(SB CLASSIFICATION TYPE NODE I STRING);
out node names : array of (SBCLASSIFICATIONTYPENODE));

* "" Given either the name of a module or the name of the classification node type,
return the names of the subtypes (nodes) for that node type or module. This

LA allows the user to go up a classification tree or lattice.

S.procedure list tree subtypes ( in (node name I modul name)
" (SB CLASSIFICATION NODE TYPE I-STRING) ;

out node-names : array of (SBCLASSIFICATIONNODE.TYPE));

List the hierarchy of node types; the root starts from the given node or from
the node type of which the given module is a member.

procedure listrelationships ( in (node name I module name )
. (SB CLASSIFICATION NODE TYPE I STRING);
out relationshipdescriptions : SB NODE RELATIONSHIPS; );
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List the relationship between the specified node in a classification scheme
(or the node to which the given module belongs ) and the adjacent nodes.

procedure scroll(in direction : BOOLEAN; '
n : INTEGER;

) returns (SUCCESS I FAILURE);

Scroll the results of a query n tuples up or down the screen. The variable
"direction" is a boolean that indicates whether to go up or down. s ;

procedure elaborate(in keyval : (INTEGER ISTRING I FLOAT I ... ' ";

rel : REL ID;
tup : TUPLE ID;

"" returns (SUCCESS [ FAILURE );

Display the remaining attributes of the object whose key is being presented. .

Jb
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(iii) PROGRAMMATIC INTERFACE

procedure SB close relation(in relation id : RELATION-IDS); 'iv
returns rSUCCESS I FAILURE);

There will be no more requests for the tuples of this relation. The SB may
then flush its buffer of this relation if neccessary. The user of the SB does
not have to make this call since it merely a courtesy call to help the SB
manage its buffers. ." i

procedure SB execute(in SB tokens : SB PARSED QUERY TYPE;
out SB response SBRESPONSETYPE) - _

" .-. returns (SUCCESS I FAILURE);

Execute an SBMS pre-compiled query and return a response. Every response
consists of at least the following : a Boolean flag to indicate success or
failure, error messages if the processing failed, the kind of data returned
(e.g ADA source code or database values), number of tuples if database values,

-" byte length of the code if code.

V".

-. . procedure SB flushtuples(in relation id RELATIONIDS)a returns (SUCCESS I FAILURE);

Flush the SB buffers of the tuples of this relation. This again is a courtesy
call.

procedure SB get first tuple(in relation id : RELATION IDS;
out SB response :SBRESPONSETYPE)

returns (NULL I FOUND)

Get the first tuple in response to a query. The response must include the
* " following (at least)

- NULL or FOUND to indicate either.
- relation id

• - tuple id
- attribute-value-pairs

. - attribute name
- type
- number of characters
- value

S.Note that it is not necessary to send all the attributes at once. A minimal
set consists of at least the following <TBD>
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procedure SB process(in SB query : SB QUERY TYPE;
out SB-response : SBPARSEDQUERYTYPE;)~

returns (SUCCESS I FAILURE);

Scan, parse, and execute an SB query. For the response, see procedures "
SBparse and SBexecute.

procedure SB begin accept module(in module name : STRING; *',

out tup id : TUPLE IDS

return (SUCCESS I FAILURE);

Create a new module by first creating a tuple for it; return the tuple id of .* -,-.

the new tuple.

procedure SBget-attr(in tupid : TUPLE IDS; *"-

in att name : STRING; b
out SBresponse : SBRESPONSETYPE

returns (NULL I FOUND)

Get the named attribute from the specified tuple.

procedure SBget code(in procedurename STRING;
out SB response SBRESPONSE TYPE

returns (SUCCESS I FAILURE);

Transmit the source code of the named module onto RaPIER.

procedure SBget next attribute(in tup_id : TUPLE IDS;
out SBresponse : STRING

returns (NULL I FOUND I END OF TUPLE);

Get the next attribute of a tuple.

procedure SBget nexttuple(in relation id : RELATION IDS;
in number :-INTEGER;
in direction : BOOLEAN;

out SB response : TUPLE ID

returns (NULL IFOUND) ;
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Get the next tuple of this relation. Note that because queries may be nested,
it is necessary to keep track of relation and tuple ids. The variable
"number" indicates the number of tuples to returned and while "direction"
indicates which direction to go relative to the position of the cursor on the
databse buffer.( For example "1" indicates thit the tuples above the cursor .

are to be retrieved while "0" indicates that the tuples below the cursor are
to be retrieved. It is up to the RaPIER system to maintain its own
currencies.

* procedure SBput attribute(in tupid • TUPLE IDS;
in att name STRING;

' -. in att value : ATT TYPE

Put the attribute value of the named attribute Into a tuple.

procedure SBgettuple(in relation Id : RELATION IDS;
iW in tuple name :TUPLE ID;

out SB response TUPLEID

returns (SUCCESS I FAILURE);

Get a the named tuple from the specified relation. This is almost a direct
access.

procedure SB open relation(in relation id : RELATION IDS;
out SB response : SB RESPONSE TYPE

returns (NULL I FOUND) ;

Get ready the results of a previous retrieval for transmission to RaPIER.

procedure SBjparse(in SBquery SB QUERY TYPE;
out SBresponse : SB PARSEDQUERYTYPE
) returns (SUCCESS I FAILURE);

Scan and parse an SB query. Return a success or failure code to indicate
either; this code is followed by either a string of error messages or a string
of tokens which constitute an internal form of an SB query in pre- or postfix.

procedure SB_pattern match(In pattern : STRING;
in tup id : TUPLE IDS;
in att name : STRING;

returns (MATCH I NO-MATCH)

Match a given string against the value of an attribute.
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procedure SB store code(in module-name :STRING;
in tupid : TUPLE IDS;
in code : ADA CODE;LI
out SB response : SB RESPONSE TYPE

'S returns (SUCCESS IFAILURE);

Store a piece of Ada code and return a tuple id of the tuple describing the
code.

procedure SB end accept module(in modulename :STRING;
out SB response :SB RESPONETP

RETURNS (SUCCESS I FAILURE); -

*End this transaction and inform RaPIER if the module was entered.

procedure SB enterspecification~in specs: SB SPECIFICATIONTYPE;
in modulename :STRING;
out response :SB RESPONSETYPE;

returns (SUCCESS I FAILURE); :

Enter the specification for a given module.
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SECTION 6

REUSABILITY GUIDELINES FOR ADA

This section presents metacharacteristics, characteristics, and guidelines for
writing reusable Ada source code. This material is the result of work on Task
H1.3 and Honeywell-funded work. We present the material as a self-contained
guidebook, with its own table of contents and bibliography.

6.1 PROBLEM STATEMENT

Both software production costs and the amount of new software produced
annually are skyrocketing. In 1980, the U.S. Department of Defense (DoD)

spent over $3 billion on software. By 1990, their expenses are expected to
- grow to $30 billion/year [HOROWITZ84]. If current development trends contin-

ue, future costs will be increased even more by unreliable software, software
delivered late, and continuing maintenance problems.

Today's software needs outpace our ability to produce it, as shown by the
backlogs in MIS departments nationwide, and needs are growing each year

•*: .. ' [STARS83]. There is and will continue to be a serious shortage of qualified
programmers to meet these needs. One might expect productivity increases for
programmers to make up for at least a part of this shortage. However,
software development has seen relatively small year-to-year productivity
increases as contrasted with dramatic increases in hardware fabrication
.HOROWITZ84]. We feel that a key to significant gains in programmer produc-

4%, tivity lies in the area of software reuse. Reuse makes particularly good
sense since the cost of software is an exponential function of its size.
Halving the amount of new software built will more than halve the cost of
building the software that we need (JONES84U.

Software reuse is an important part of the RaPIER project for many of the same
reasons it is important to software productivity increases in general.
Remember, one of RaPIER's main goals is "...to develop a prototype engineering
environment (that will] provide tools and techniques for developing modifiable
prototypes quickly and inexpensively...". The approach to achieving this goal
is to build prototypes from reusable software parts. It is the characteris-
tics of these reusable software parts that will provide the modifiability, and
the rapid and inexpensive development of prototypes that RaPIER requires.

To date, no adequate characterization of what makes software reusable exists.
It is quite common to read unmeasurable, qualitative admonitions as to what
makes software reusable and/or specific examples of software that is claimed
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to be reusable. However, these admonitions (or "metacharacteristics") and
software examples are not enough. Measurable characteristics of reusable
software are needed as well as specific guidelines to implement them in source
code. Only through use of these characteristics and guidelines can the full
potential of reusability be achieved.

6.2 OUTCOME

The RaPIER project has developed Version 1.0 of "A Guidebook For Writing
Reusable Source Code in Ada (R)." This guidebook contains three reusability
metacharacteristics, fifteen measurable characteristics that realize the
metacharacteristics, and 63 guidelines for implementing these characteristics
in Ada source code. Guidebook chapters are organized to follow the Ada
Language Reference Manual [DOD831. Version 1.0 of the guidebook contains

* selected chapters covering all major Ada program units, program structure,
compilation issues, and visibility rules. Example Ada modules that were
written following the guidelines are also provided. This guidebook provides
the RaPIER project with a basis to begin writing reusable Ada software parts
to be used in its prototyping system.

6.3 REUSABILITY GUIDEBOOK

The following pages contain version 1.0 of "A Guidebook for Writing Reusable
Source Code in Ada (R)." This guidebook will also appear separately as a
technical report.
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Preface

.-PREFACE

This guidebook was produced as part of the RaPIER (Rapid Prototyping to
Investigate End-user Requirements) project at the Honeywell Computer Sciences

'." Center. It is version 1.0 of a guidebook scheduled for completion in the
third quarter of 1986 and contains selected chapters from the final guidebook.
The purpose of the RaPIER project is to develop a methodology and automated p-
support (the RaPIER system) for prototyping embedded computer systems and
software. The project's co-equal goals are: (1) to develop technology for
building and using prototyping in system and software development, and (2) to
insure smooth transfer of that technology to Honeywell operating divisions and
the U. S. government. The RaPIER system consists of a repository of
reusable code and a front-end workstation for constructing and executing
prototypes.

I wish to thank a number of people who helped me during the writing of this
guidebook, most notably Elaine Frankowski, Emmanuel Onuegbe, and Paul

- Stachour. These people were my coauthors on a paper entitled, "Measurable
* Characteristics of Reusable Ada(R) Software," which will appear in an upcoming

issue of Ada Letters. Specifically, Elaine provided excellent technical
* -" insight into the possibilities of and obstacles to reusability of source code,

organization to my sometimes wandering ideas, encouragement, advice, moral
support; in short, everything I needed to write a guidebook of this size.

. Emmanuel provided consultation support in the area of software classification
and software bases. This gave me necessary insight into systems to store and
examine reusable source code and the requirements these systems may place on
the code itself. Paul, in his role as an "Ada Language colleague," provided
me with ideas for guidelines and good advice.

* I would also like to thank other members of the Honeywell RaPIER Project apd
Software Development Technology Department: Curt Abraham, Lai King Mau, and
Mark Spinrad for their reviews and general support, and Dede Schmidt for her
excellent clerical support.
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Introduction
?,.

,SECTION 1:

REUSABILITY, CHARACTERISTICS OF REUSABLE SOFTWARE, AND ADA

1-1 INTRODUCTION

Both software production costs and the amount of new software produced
annually are skyrocketing. In 1980, the U.S. Department of Defense (DoD)
spent over $3 billion on software. By 1990, their expenses are expected to
grow to $30 billion/year [HOROWITZ84. If current development trends contin-
ue, future costs will be increased even more by unreliable software, software
delivered late, and continuing maintenance problems.

Today's software needs outpace our ability to produce it, as shown by the
* backlogs in HIS departments nationwide, and needs are growing each year ,-;1.

(STARS83]. There is and will continue to be a serious shortage of qualified
programmers to meet these needs. One might expect productivity increases for
programmers to make up for at least a part of this shortage. However,
software development has seen relatively small year-to-year productivity
increases as contrasted with dramatic increases in hardware fabrication
[HOROWITZ84]. We feel that a key to significant gains in programmer produc-
tivity lies in the area of software reuse. Reuse makes particularly good
sense since the cost of software is an exponential function of its size.
Halving the amount of new software built will more than halve the cost of
building the software that we need [JONES841.

"" "" [JONES8I] reports that the required functionality of a large amount of all
software produced is common or redundant. This would lead us to believe that
software reuse is a very common practice today. However, while software is

* . being reused, this is only true in limited application areas and cases
[STANDISH84J, [HOROWITZ84]. Why isn't reusability more prevalent?

In order to achieve reusability, a number of conditions must be met. Most
importantly, an adequate characterization of what makes software reusable must
exist. To date it is quite common to read unmeasurable, qualitative admoni-
tions as to what makes software reusable and/or specific examples of software
that is claimed to be reusable. However, these admonitions (or
"metacharacteristics") and software examiples are not enough. Measurable

" characteristics of reusable software are needed. These characteristics can
form the basis for guidelines that programmers can follow to write reusable
snftware and to determine whether software written by others is reusable.

Honeywell Computer Sciences Center 83" r>.
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- This guidebook is the result of an ongoing research effort at the Honeywell
Computer Sciences Center (CSC) to define measurable characteristics of LI

reusable software as well as guidelines for implementing them In Ada.

I-1.1 REUSABILITY -- A DEFINITION

[WEBSTER77] defines "reusable" as "capable of being used again or repeatedly;" ,
• "reuse" as "to use again esp. after reclaiming or reprocessing..."; and

"further or repeated use." (KERNIGHAN84] defines reusability as "...any way
, In which previously written software can be used for a new purpose or to avoid

writing more software." In this guidebook, we address reusability of source
code which may involve some modification of the code.

We propose these metacharacteristics of reusable software: (1) Candidate
software for reuse must be able to be found; (2) Once found, software must be

" understood enough to be reused; (3) Once found and understood, software must
be feasible to reuse. Software which is feasible to reuse (a) is built for
reuse, (b) is fit for reuse (i.e., a "plug-compatible" part), and (c) displays
conceptual clarity or appropriateness. Findable, understandable,

" reuse-feasible software is more economical to reuse than to recreate. Chapter
1-2 posits 15 software characteristics that realize these metacharacteristics.

These are the assumptions that underlie our discussion of the
metacharacteristics and characteristics:

1. Reusable software is well-engineered software, designed and coded
according to the best software engineering practices knovn today. Badly
designed algorithms and implementations should not be used even once, a
fortiori they should not be perpetuated through reuse. In addition, badly
engineered software will not meet the reusability characteristics and
guidelines proposed in this and the following chapter. Therefore all the .
accepted software engineering guidelines for "good" design and code also " -
apply to reusable code.

2. Reusable software is stored on some computer under the control of a
database (or software-base) management system. If the software resides in
a simple file system, or is kept only on paper, some of the following -
discussion does not apply. However, parts of it are valid no matter how
candidate software is stored and managed.

3. Software can be reused with or without modification. It is preferable to
reuse a software part as a "black-box," tailoring it only by external
data: tables, parameters, and so forth. However, until we become
experienced at designing reusable software, reuse may involve some code.'. ...
modification. Therefore all the accepted software engineering guidelines .

for modifiable code also apply to reusable code.

Let us examine the metacharacteristics in some detail.

1. Candidate software for reuse must be able to be found.
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Findable software must comprise both code and specification. At a
minimum, the specification tells users what a software part does, thus

P allowing them to decide whether it meets their functional needs. This
information may be presented formally or informally. A specification may
describe attributes of the software part such as author, hardware
dependencies, execution time on a particular configurat on, and so forth,
which further assist users in deciding what software is appropriate. If
the specification is formal it is machine manipulable and thus a software
base management system may use it in satisfying queries and "browses."
See Section 5 of (RAPIER86]. Even if the formal specification is only a '"

compilable procedure header with an evocative name and descriptive parame-
ter names and types, it serves human communication needs as well as being
executable.

The apparatus for storing and managing software contributes greatly to its
findability. That apparatus includes a software base management system
and intelligent schemes for classifying software so that searches into the
software base are successful without being frustratingly long. The need

.. -to classify software to facilitate browsing in an unfamiliar repository
puts demands on the model under which the software is developed (e.g., .-

functional, object-oriented), and the nature of the software part itself
(e.g., highly cohesive [BERGLAND81]).

It must be significantly less costly to find software and reuse it than to
recreate it. Both the specifications and the apparatus for managing the
reusable software must support relatively low (human and machine) overhead
for storing software and searching for it.

2. Once found, software must be understood enough to be reused.

This requirement involves both the software part's specification and, if
its code is to be modified, the way in which it is coded. All the
problems with formal or informal specifications [FREEMAN83] in general
apply to specifications of reusable software also: resistance to using
formal specifications, inability to write formal or informal specifica-
tions that accurately say what a piece of software does, the difficulties
in specifying performance, reliability, and so forth. As these problems
are solved, the solutions must be adopted for specifying reusable
software. In addition, there are judgments to be made about what
attributes of a software part re-users need to know in order to decide
whether the software meets their needs.

If the software is to be modified, it must be engineered so that re-users
can examine the code and make changes that do not introduce errors or
unwanted side effects, and that do make the desired alterations.

3. Once found and understood, it must be feasible to reuse the software.

Software that can be reused

Honeywell Computer Sciences Center 85
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o is built for reuse - constructed under the constraint that it will be
reused. This constraint will cause builders to eschew hidden side r
effects, assure that the component does not reference global data
structures or hardware devices that may or may not be present when it
is reused, provide as good a specification as they can, and so forth. .. S.

o is fit for reuse (i.e., is a "plug-compatible" part) - composable with
other code in such a way that it neither interferes with that other .. ,

code nor allows itself to be interfered with. This constraint will
lead to software that, for example, includes scaffolding that can be
used during a "build" to test the software part in combination with
other parts, that handles errors In a standard way, or that makes -.
extensive use of parameters or other language constructs for -

modifiability.

o displays conceptual clarity or appropriateness - presents a useful
abstraction (such as a table, a database, a sensor or a stack) at an -

"appropriate" level. This constraint should lead to software parts
built under some model such as the Smalltalk [GOLDBERG83] object model, . --
and to software reuse under a system model such as "software as
simulation" [MacLENNAN85] or the Lisp flavor model [SYMBOLICSI].

Each of the software characteristics proposed in Chapter 1-2 is a means of
achieving one (or some) of these metacharacteristics. Figure 12-I:
Reusability Characteristics Realize the Metacharacteristics, provided in Chap-
ter 1-2, relates each of the proposed characteristics to the j ..
metacharacteristics it promotes.

1-1.2 OUR APPROACH TO ACHIEVING REUSABILITY

Our apprcich to reusing source code centers around reusable components,
written as Ada packages, classified for both browsing and retrieval, and
residing in a library or software base. See Section 5 of (RAPIER86]. We
believe that the features of the Ada language combined with a set of software
design and coding guidelines supporting measurable characteristics of
reusability that achieve the metacharacteristics defined above will enable -
creation and reuse of software in a manner not possible with most other -

languages and systems. These guidelines will constrain how Ada software is • .
written for the sake of reusability. High-level features of the Ada language
that support reusability are discussed in Chapter 1-3.

Companion work at Honeywell's Computer Sciences Center is also addressing the -
organization and composition principles that will provide a framework for
reuse of components. A classification of components according to behavior has - -
been proposed in Section 5 of [RAPIER86]. Program composition using an -

adaptation of the operational paradigm for program design has also been
proposed in Section 3 of [RAPIER86]. A high-level language for composing .

programs of components drawn from a the software base using a Prototype System L -
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Description Language (PSDL) is being designed by International Software':
Systems, Inc. (ISSI) [1SSI86]. So the characteristics and guidelines in this
guidebook fit Into an overall approach to reusability. 9r

There are technical issues to be resolved before this approach can be applied.
Technology Must be developed in the areas of: A

1. the reusable code itself,

2. information about the code, such as its documentation, specification,

classification, the recording of design information, and its attributes.

4I. defining a development life cycle that permits and promotes code reuse.

This guidebook attempts to deal with the first two Issues, assuming an
archiving apparatus. The life cycle issues are left to others.

One can design and write code and simply claim it is reusable, but if it does
not satisfy the metacharacteristics mentioned above and measurable character-
istics defined in Chapter 1-2 it will not be reused. As we stated earlier,
measurable characteristics form the underlying basis for guidelines for

* writing reusable software. These guidelines are essential for two reasons.
First, they define reusability in terms that can be understood and followed by

h software developers. Second, these guidelines provide a means to control
development of reusable software (i.e., promote a standard reusable software
product that is amenable to automatic retrieval and systematic
modification/use and is understandable as well). At this point, we suspect
that standards for developing reusable software are more important than
individual programming styles.

1-1.3 OTHER APPROACHES TO REUSABILITY

[BIGGERSTAFF84) groups the various approaches to reusability into two broad
categories. The first group consists of those approaches that emphasize the
accumulation, organization, and composition of components, while the second
group consists of approaches that emphasize the generation of the target
program. For the second group, the authors noted that it is the patterns that
generate or transform programs that get reused; pre-existing components do not

* necessarily reappear intact (if at all) in the target programs. Very
High-Level Languages (VHLLs), application generators, problem-oriented lan-

guages (POLs), arid program transformation systems belong to this second group.

Our approach to reusability falls squarely into the first group: we will
reuse code. Other approaches in this group emphasize the reuse of design or
specifications. In order to accumulate code, we must first design and build a

* repository or software base. The characteristics of the software to be stored
In such a repository must make it attractive to Users. This-is the motivation
for suggesting guidelines for writing reusable code.

Honeywell Computer Sciences Center 8T
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I-1.4 ORGANIZATION OF THIS GUIDEBOOK

This guidebook is organized into two sections. Section I introduces the
reader to the concepts and state-of-the-art in software reusability, presents
our approach to reusability, and surveys other approaches. Our approach is
described in terms of characteristics of reusable software and how the Ada 4
programming language in a high-level way can be used to implement these
characteristics. Section II presents specific guidelines on how the
above-mentioned characteristics of reusable software identified can be
realized in Ada code. It is meant to be a reference manual. To this end, it . ,
is organized in chapters that follow the Ada Language Reference Manual
[DD83]. Appendix A provides a list of all guidelines appearing in Section
II. Appendix B provides a cross reference between the reusability character-
istics we posit in Section I and these guidelines. Appendix C contains
example Ada modules written following our reusability guidelines. Appendix D
contains a glossary of terms.

[
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Characteristics of Reusable Software

.% '.%

* 1-2 CHARACTERISTICS OF REUSABLE SOFTWARE

1-2.1 CRITERIA FOR REUSABILITY CHARACTERISTICS

The reusability metacharacteristics (see Chapter I-I) are qualitative "good
practice" admonitions. In general, they are not measurable or achievable
without further guidance. In contrast, the characteristics are measurable or
judgable qualities that software should possess in order to meet the
metacharacteristics. We have proposed characteristics that are statically
measurable or judgable today or will be measurable/judgable once we have more
experience with reusable software. For example, today we can measure if
software is free from hidden side effects. However, we cannot judge whether
software has the right balance between generality and specificity. Only when
software has been reused for some time, we will be able to judge this quality.

", The characteristics listed below are also reuse-specific; using them will
produce software that is designed and coded a priori for reuse. The "good"
software practices mentioned in Chapter 1-1 will contribute to reuse but will~not specifically make software reusable. V2

This guidebook only briefly discusses an important aspect of reusability:
domain or application specificity. We expect that application specificity
will be a major factor in enabling software reuse [FRANKOWSKI85b]. We further
expect that some applications permit more reuse than others; an extreme

I example is that more business data processing software can be reused
[LANERGAN841 than can embedded software for avionics systems. However, Just
as all software intended for reuse must be built using good software
engineering practices (see Chapter I-I), it must be built using application
neutral basic reusability guidelines in addition to application specific
guidelines. The characteristics listed below are those underlying guidelines
for reusability across application areas.

1-2.2 LIST OF CHARACTERISTICS

Characteristics of reusable software include:

1. Interface is both syntactically and semantically clear [STANDISH8M].

*i In order to reuse a piece of software correctly, its interface must be
, understood. If one considers an interface as a socket to which client

programs can connect, then each facet of the socket must be clearly
defined. The syntax must not only be correct, but should also convey some
meaning. Mneumonic names should be used in order to quickly convey the

-" functionality of an Interface. For example, an interface called
"draw circle" is certainly more descriptive than one called "d c;" a
parameter named "radius" is also more descriptive than one named "rd.""
Also, parameters should be typed, checked (preferably at compile time),

Honeywell Computer Sciences Center 89
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and constrained to satisfy the domain of the problem to be solved. For
example, if an object can reasonably be assumed to take on values of 0 and
1, It should be of this type rather than an integer.

A combination of language features and documentation constructs should be
used to convey the semantics of the interface to the user. Each parameter ',
should be defined with an appropriate mode (e.g., in, out, etc.) and
should have a brief explanation of its function (e.g. "plant location is
the name of the city where the plant is located"). The user should be
informed of all the assumptions that a component makes in order to execute
correctly. For example, a binary search function assumes that the list it
searches is ordered; an explicit statement of that assumption enables the .: .
user to reuse such a function only in the appropriate contexts. In this
way, the interface definitions and their documentation constitute natural
language functional specifications (though degenerate) that aid users to
judge the reusability of a component.

The more visible the description of a software module's interface, the
easier the module will be to reuse. All the interfaces exported and
imported by a module should be clearly described in the documentation for
that module.

2. Interface is written at appropriate (abstract) level.

Reusable code should be written so that its interface is at a level
appropriate for its function. For example, a routine that handles tables
of type table type should be passed an object of type table type, not
subobjects corresponding to the table entries. Clarity is sacrificed if
the interface is not at the appropriate level. As another example,
consider a function that makes decisions based on the information
contained in a project database. Since a corporation president's view of
the project is at a higher level of abstraction than that of a middle-line
manager, having a different interface for each user is more appropriate
than having one Interface through which all the details concerning the
project must pass.

Another aspect of level Involves nesting of language constructs. It is
easier to reuse a component whose interface is no deeper than one nested
level within the declarative part of a compilation unit. Single-level
nesting can make classification of reusable software simpler and makes the
software easier to understand since its "environment" or context is not
over-complicated by language visibility rules and hiding.

Whenever different users need to reuse the same function at different
levels, It is more reasonable to have packages, each dedicated to one .*.
level of abstraction, than to have one package in which all levels of
abstra-tion are muddled together.

3. Component does not interfere with its environment.

90 March 1986 " "'
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Interference is unexpected behavior or behavior that cannot be
"rolled-back." Any well-defined software should not interfere with its
environment: it should generally not change global data, be free from
hidden side-effects, have a clear and predictable effect on its environ-
ment, and should minimize assumptions it makes about its environment.

. Non-reusable software, with its one-time environment, can violate this
guideline and still be effective (though maintenance, a form of reuse, may
be adversely affected).

SWhat is the environment for a reusable part? It may be clear what its
environment was as part of the system for which it was originally
developed. However, in general, its environment is the sum total of all
possible "situations" in which it may be used now and in the future.
Because this set of situations may not be totally specifiable, it is
essential for software that is to be reusable to meet this guideline.

To be specific, reusable code should be written using language features
that make clear exactly what the code expects from the environment, what
effects it will have on its environment, and how these effects will be

6 realized. These expectations and effects should always be documented by
comments in the code. Communication of code effects should be done using
parameters or function values. Language features that restrict data to

its intended use should be utilized (e.g., mode of parameters in
subprograms, etc.). Use of visibility rule/naming constructs that are

* convenient In isolation but can cause ambiguities when used together with
other code (i.e., in a different environment) should be minimized.

4. Component is designed as object-oriented; that is, packaged as typed data
with procedures and functions which act on that data.

An object orientation to code involves mapping of "solutions" to our human
view of the "problems" the software is trying to solve (BOOCH83I. Our
human view involves objects, attributes of these objects, and operations
on objects expressed in a noun/verb sense in English. An object orienta-
tion to software aids understandability since solutions to problems are

" .' expressed in our "human terms."

Reusable software should act on objects explicitly. What we are
9 advocating here is a clear definition and method of "acting" on objects.
* -All actions or operations on objects should be defined as subprograms (or

their equivalent) with the objects as parameters. Furthermore, the
objects or at least their types should be "packaged" as close to the
definition of the operations on them as possible. Ideally, they should be
packaged together to ease location, reference, and use. To promote
reusability it is better not to use global data that is changed implicitly
by routines to which it is visible but to pass the data to routines as
parameters making it explicit that (1) these routines are actors/operators
on the data and (2) this is just how this data will be treated (e.g., as
input only, as a constant, and so forth).
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Based on Section 5 of ERAPIER86], we will define operations on data in o
context as implementations of behaviors that characterize objects, the L
objects being defined by the set of all behaviors associated with them.

5. Actions based on function results are made at the next level up. :.:

A software module produces some result or effect. The module must allow
its client to initiate all further actions, calculations, and decisions
based on the result or effect. Both producing and using an effect or
result makes for highly-coupled software that can be misunderstood or
produce mysterious effects.

Reusable software needs to have a definite predictable function based on a
well-defined set of inputs/environmental parameters. Code written to
always pass results up to its caller is predictable. For example, if a
routine needs to use a tape drive to perform its function and the drive is
not available, it should report back this condition, not try to handle it
by printing a "tape drive not available" message. Code that uses this
routine should expect to handle this condition and may treat it as an ..

error or simply ignore it. Thus, this guideline promotes both-
understandability and fitness for reuse (i.e., composability or plug
compatibility).

6. Component incorporates scaffolding for use during "building phase."

[BENTLEY85I defines software scaffolding as 11 ... temporary programs andA
data that give programmers access to System components." This scaffolding
is analogous to scaffolding around a building under construction which
gives workers access to the building they would not normally have.
Another analogy is built-in test equipment in hardware. Scaffolding in
software development isn't usually delivered to the customer but can be of
immense help during debugging, testing, and integration. Scaffolding

produces software that is built for reuse.

For the sake of reusability, scaffolding can provide valuable help in
integrating a piece of software with others and/or using it for the "first
few times." Scaffolding may include print routines to show program
behavior, special error-handling routines, routines to check and view
interfaces, parameterization to minimize the amount of modification
required for use, and so forth.

7'. Separate the information needed to use software, its specification, from-
the details of its implementation, its body.

The specification of a software component is what needs to be visible to
the user. The details of the implementation are not directly necessary;
such details may turn out to be superfluous, confusing, and may be Used
incorrectly. Implementation details should therefore be separated from a
component's specification and hidden from the user. A typical example is ~
the separation of the body of an Ada package from its specification; users
do not need to know about the body of the package in order to use it.
There may be cases where implementation information is needed; for

92 March 1986



* ~. Characteristics of Reusable Software

example, a database system might inform the user about how to choose
access strategies in order to speed up retrieval. Such Information can
still be incorporated into a specification. One should therefore use
language features to separate specification of function from its

implementation as well as to limit access to representation details of

data used in communicating with the software.

8. Component exhibits high cohesion/low coupling (BERGLAND81].

*-. Functionally cohesive software modules lend themselves to
understandability and thus to reusability. High coupling to other modules
limits a component's use in isolation since the modules to which it is

Scoupled effectively form an environment which is necessary for its
compilation and execution. Reuse of the component in another environment
may be desired but not possible because of its high connection with its
original environment.
One effective means of achieving high cohesion is by using an
object-oriented program design methodology. The object oriented paradigm

provides actors, each with Its own set of applicable operations. An
object oriented design strategy makes it natural to detect low cohesion;
for example, a screen manager that performs namespace management functions
is obviously not functionally cohesive. Also, the higher the cohesion of
a module, the easier it will be to classify.

9. Component and interface are written to be readable by persons other than
II the author.

The need for interface readability stems from the fact that a component's
-' interface is part of its documentation, and that documentation is used by

people. Code readability is related to the need for modifying code.
Though modifying a module by changing its code is less desirable than
modifying it with external data, code modification will be a fact of life
until the software development community becomes experienced in writing

-: ~ software that can be reused with only external modifications.

' 10. Component is written with the right balance between generality and
specificity [KATSUMOTO84I.

Components that are too specific do not lend themselves to reuse by a
large user community. A sort package that works on character strings as

-. .well as numbers can be reused by more users than a package that only sorts
integers. There is a need, however, to maintain a balance between
generality and specificity because there is often some price to pay for
generality. One cost of over-generality is performance, since extra

*: "*. processing is required In order customize the general module to a specific ,-.;
application. Another cost is the slower learning curve: the more general
the component, the more knowledge that is required to use it.

One effective way to achieve generality is through parameterization. We
*therefore encourage the use of language features that allow increased

parameterization [GOGUEN8I]. A module with parameters for all possible
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design choices is both general and tailorable to many situations in an
application area. It can probably be reused without modifying any code.
Ahighly parameterized module with default values for most of its

'I,. parameters is particularly convenient to reuse, since reusers need to
consider only differences between the default situation and theirs and
give values to only a few parameters, rather than define the complete
situation by providing values for every parameter.

11. Component is accompanied by sufficient documentation to make it findable.

An environment which encourages software reuse is usually equipped with
(at least) a means of cataloging reusable components and a means of
interrogating the catalogue. Modern database management systems,irelational databases for instance, are suitable for storing and
cataloguing components since they provide ad-hoc query facilities for
retrieving components based on the values of some keys (information)
associated with the components. Some of the pertinent information that
should be stored along with a component [YEH84, AMAN0841I nclude purpose,
revision history, resources required (e.g. other modules), languages,
operating system, runtime utilities, 1/0 devices, automatic interrupts
affecting module execution, memory requirements [MATSUHOTO84], and perfor-
mance characteristics. Writers of the reusable component should therefore
f ill in as much Information as a software base needs to successfully
include the component in its catalogue. They should also include enough
textual documentation in the code itself to enable those who look at the
code to understand or locate the portions of interest.

12. Component can be used without change or with only minor modifications.

Ideally, code can be reused with no changes required. This implies that
it can be understood and provides the required functionality, interface,
and Possibly performance characteristics. Developers of reusable software
parts should use language features that support parameterization in the
code. (See characteristic 10 above). If some changes Will inevitably be
required in code in order for it to be reused, developers should isolate
and identify those things that are expected to need changing.

Quite commonly, code is reused by grouping it together with other
software. Developers should use language features that facilitate this
grouping. For example, developers should exploit language features to
reference previously-compiled code instead of having to combine code with
a text editor and recompile it before reuse.

13. Insulate a component from host/target dependencies and assumptions about
its environment; Isolate a component from format and content of informa-
tion passed through it which it does not use.

*A reusable component should not depend on an implicit environment.
Contact between the component and the world Outside should occur only .

through explicit parameters and explicitly invoked subprograms. This
guideline rules out "bit-flicking" or machine-dependent optimization and
encourages the use of higher-level languages for coding.
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All th supin aeb h opnetms eepiil ttda

'Uhas tocneta ntneoftyeAitanwisaceotpeBthr
does not have to be any check on type A. Such an assumption must be

language. For example, a function input of type STRING that is
interpreted in two parts exhibits an "embedding of semantics" that makes
reuse potentially difficult. If this is absolutely necessary it should be
documented. However, it would be better If the function received two
arguments in which the appropriate substrings were passed.

.~ ~.Finally, if it is necessary to pass data through a software module that
will not be used directly in the nodule, but by a routine it calls,
refrain from using this data in any decisions made In the module. Were
this data to subsequently change, the assumption that it was "simply
passed through" would be incorrect and the module would require an
unexpected change.

V

V1J4. Component is standardized in the areas of invoking, controlling, -

P terminating its function [JONES8II, error-handling, communication and
structure [LANERGAN84].

Standardization is a key to understandability in software reuse. A
template for writing software components or parts for reuse is desirable
when people other than original code developers must deal directly with
code. In the area of invoking a function, for example, standards can
involve grouping of parameters with like modes together or placing all
default parameters at the end of a parameter list. In an extreme case and

L for a particular application area, all functions of particular types will
by convention have a common set of parameters. Data may be structured in
a common way; control functions and function termination may be
standardized as well. For example, one exit point per function may be
desired or possibly one normal exit and a grouped set of "abnormal" exits -

may be specified.

Reusable software should handle errors in a predictable and effective way.
It is important to the use or reuse software modules to be able to

~., .. ~ understand and predict how they will react to erroneous conditions. This
predictability is important for reliability and confidence as well. When
a software module is combined or grouped with others for reuse, it is even
more important that errors be handled effectively for ease in debugging
and isolating problems since, in general, the user of the reusable modules
will not know much about their internal structures. The message "Error at
line 4173 of module x" is inadequate for two reasons. First, a more
descriptive message relating to nodule behavior, its external view, data
provided to the module, and so forth would be more appropriate. Second,
if the real error was caused by code in another module, a traceback
machanism to the original condition that caused the error In the other
module is important and useful but is not provided. As reliability and
correctness of software is established, more and more inspection of data
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passed from one module to the next will be the major method of debugging a
composite program [BIENIAK85]. Error handling that supports this inspec-
tion is desired.

Reusable software should communicate via standard protocols. Software
that communicates with other software (or hardware) in standard ways
(i.e., ones already known and accepted by its users) facilitates reuse in
that it will be easier to use, no learning will be involved, and its use
will tend to be more error-free/successful. , I,

All of the examples above are driving toward some common structure for
code so that understandability and possibly data and control code
interchangeability can make reuse possible.

15. Components should be written to exploit domain of applicability
(NEIGHB0RS84]; components should constitute the right abstraction and
modularity for the application.

There are two points to be made here. First, developers should exploit
language features that help promote modularity of code. A 2000 line piece
of code is less usable/modifiable than 10 200-line ones from an
understandability and possibly a recompilation standpoint. Large
black-box pieces of code can be very useful for reuse. However,
modifiability is enhanced if a "piece of the whole" can be changed and
recompiled without effecting the whole. Second, for particular applica- -

tion areas, modularity may involve packaging the right functions together -

for use. Certain functions in an application area used together and in a
particular way may be quite natural. This aspect of application domain
should be exploited and not overlooked when writing reusable software. In
this case, these functions should be "packaged" together and made easily
accessible to potential users through use of appropriate language con-
structs.

Figure 12-I relates each of the proposed characteristics to the
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Characteristics of Reusable Software

metacharacteristics it promotes.

Metacharac ter istics
Characteristic

1:findable 2:understand- 3a: built 3b:fit 3c:conceptually
able sound

1 *0
2 0
3 0
4 0 00

6
7 0 o
8 0
9 I0
10 0
11 0 0
12 0*
13 0 0
14 0
15 0

(KEY: *=major metcharacteristic supported;
o other uetcharacteristics supported)

* Figure 12-1: Reusability Characteristics Realize the Ketacharacteristics

Hoewl omue cece etr9



A Guidebook for Writing Reusable Source Code in Ada

1-3 THE ADA PROGRAMMING LANGUAGE AND REUSABILITY
IF[

Ada was developed for the United States Department of Defense (DoD) to help
combat the crisis in software development. The DoD realized that any software
development system for effective use DoD-wide would have to be founded on a
standard programming language with constructs supporting good software engi-
neering practices. Therefore, they developed requirements for such a language
and, after deciding that no existing language met the requirements, initiated
a language design competition that resulted in the Ada language. [BOOCH83a]
gives a complete history of the Ada language.

1-3.1 ADA DESIGN GOALS

Although Ada can certainly be used in other application areas, it was designed
for use in the development, execution, and maintentance of large, real-time,
embedded systems. As stated in (DOD83], "Ada was designed with three
overriding concerns: reliability and maintenance, programming as a human
activity, and efficiency."

In the area of reliability and maintenance, Ada emphasizes readability vs.
writability. Program variables must be explicitly declared; their types are
invariant. Ada avoids error prone notations, such as allowing implicit
declarations; its syntax is English like. Ada provides separate compilation
of program units with the same consistency checking between separately -1

compiled units as occurs within units. Separate compilation facilitates
program development and maintenance.

Ada was designed for the human programmer. The language was kept as small as
possible for its primary application domain. Its design was simplified where
possible and an attempt was made to provide constructs that correspond to its
expected users' intuitions. Also, because software systems are becoming more
complex, and distributed development is becoming more common, Ada supports - -
writing a program as a set of independently produced software components that
are then assembled into a complete program. This separate development feature
is a key to the Ada language design and helps keep the cost of reuse down; F,
packages, private types, and generics support this feature.

In the area of efficiency "any proposed construct whose implementation was
unclear or that required excessive machine resources was rejected" [DOD83]. - -

1-3.2 ADA AND REUSABILITY

Ada's design goals all implicitly support code reusability. Central to this
support is the fact that Ada is designed for the human programmer. The
ability to independently write software components that are understandable to L -
human readers and that can be assembled into a compilable program is important
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to reusability because its allows the production and use of libraries of
software parts. It is "off-the-shelf" software parts, written to be reused,
that will be reused.

Software reliability, maintainability and efficiency also contribute positive- s.. -

ly to reusability. Reliability contributes to user confidence in a software
component, maintainability to understandability, and efficiency to feasability

L for reuse.

The Ada langauge contains a rich set of features that support reusability.
Some of the most important ones are:

o packages,

o separate compilation and checking across program units,

o separate specifications and bodies for program units,

o information hiding constructs (e.g., private types),

o generics, and

o strong typing.

In this guidebook, we find it helpful to distinguish between directly and
indirectly reusable software and relate this to Ada. Directly reusablepsoftware is software that developers can search for and directly use.
Examples are Ada package specifications. Indirectly reusable software is
software that supports directly reusable software and provides it the environ-
ment, the ancillary definitions and data that it needs to perform correctly.
Examples are Ada package bodies, subunits, and so forth. In the ideal case,
indirectly reusable software is incorporated into a program under construction
automatically by a software base management system. See Chapter II-10 for
further information on directly and indirectly reusable software.

H .- '.e-'-n r
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Introduction

SECTION 11:
ONJ

GUIDELINES FOR WRITING REUSABLE ADA SOFTWARE

II-1 INTRODUCTION

This Section presents specific guidelines on how to realize the reusability
characteristics outlined in Section I in Ada code. It is meant to be a
reference manual and is organized to follow chapters in the Ada Language V,

Reference Manual [DOD83]. For example, Chapter II-10 deals with Program
Structure and Compilation Issues. Each chapter contains a brief Ada language
summary followed by guidelines for implementing the reusability characteris-
tics and a cross reference between these guidelines and characteristics. In
addition, following the statement of each guideline, we list the specific
reusability characteristics it supports. In this Section, we distinguish
between "users," that is, humans who reuse Ada source code and "clients," that
is, other software that references Ada source code.

" We suggest a particular reading order for those who want to familiarize
themselves with Section II in preparation to use it as a reference manual.

"-- This order is as follows:

o Chapter 1
o Chapter 10
o Chapter 7
o Chapter 6
o Chapter 9
o Chapter 12
o Chapter 8
o Chapter 11

" o Chapter 3
. o Chapter 4

::: o Chapter 5 "'-

o Chapter 13Chapter1
o Chapter 14 " "
o Chapter 2.

• .",. In Version 1.0 of this guidebook, Chapters I-1, 11-6, 11-7, 11-8, 11-9,
S11-10, and and 11-12 are complete; Chapters 11-2, 11-3, 11-4, 11-5, II-11,

," V 11-13, and 11-14 are not complete.
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11-2 LEXICAL ELEMENTS

11-2.1 ADA SUMMARY

11-2.2 GUIDELINES 

% ~
11-2.2.1 LEXICAL ELEMENTS IN GENERAL -

11-2.2.2 PRAGMAS

11-2.3 GUIDELINE/CHARACTERISTIC CROSS REFERENCE

%
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.9 Declarations and Types

9 11-3 DECLARATIONS AND TYPES
-7 7

11-3.1 ADA SUMMARY

11-3.2 GUIDELINES

: : 11-3.2.1 DECLARATIONS AND TYPES IN GENERAL

11-3.2.2 OBJECT AND NAMED NUMBER DECLARATIONS

* 11-3.2.3 TYPES AND SUBTYPES

11-3.2.3.1 SCALAR TYPES

-- discrete types (enumeration, integer); real types (floating, fixed point);
Discrete and real operations

11-3.2.3.2 Composite Types

--arrays, records

11-3.2.3.3 Access Types

II-3.2.4 Derived Types

11-3.2.5 Declarative Parts

-- pragma program error

11-3.3 GUIDELINE/CHARACTERISTIC CROSS REFERENCE

p""
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11-4 NAMES AND EXPRESSIONS

II-4.1 ADA SUMMARY

II-4.2 GUIDELINES

11-4.2.1 NAMES

--indexed components, slices, selected components, attributes

11-4.2.2 Expressions "". I ._
°.,.

-- include literals

11-4.2.2.1 Operators

11-4.2.2.2 Type Conversions

11-4.2.2.3 Qualified Expressions

11-4.2.2.4 Allocators

11-4.3 Guideline/Characteristic Cross Reference
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11-5 STATEMENTS

11-5.1 ADA SUMMARY

11-5.2 GUIDELINES

11-5.2.1 SIMPLE STATEMENTS

--assignment, exit, goto, delay, raise, procedure call, return, entry, abort,
,. code

* 11-5.2.2 Compound Statements

--if, loop, accept, Case, block, select

11-5.3 GUIDELINE/CHARACTERISTIC CROSS REFERENCE
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V11-6 SUBPROGRAMS

11-6.1 ADA SUMMARY

Subprograms are a form of program unit in Ada. Subprograms are executed when
called and are of two types: procedures and functions. A function call is an
expression that returns a value; a procedure call is a statement. Subprograms .
may be written with separate declarations(1) which define the interface to
their "function" and subprogram bodies which define implementation details for
execution. Subprogram bodies always contain an entire subprogram specifica-
tion and must repeat the specification given in a corresponding subprogram
declaration. However, subprogram declarations are optional from an Ada
language point of view. Subprograms have formal parameters with in, out and
inout modes. Subprogram bodies may be expanded inline at the point of call
for the purposes of code generation by use of a pragma. Named and default -

parameters may be used. Subprogram names may be overloaded; that is, multiple
subprograms with identical names but different parameter and result type
profiles may be declared and used. Function subprograms can be defined to ii

overload arithmetic and other operators.

11-6.2 GUIDELINES

This chapter's guidelines for writing Ada subprograms support the reuse
metacharacteristics described in Section I and most of the characteristics
they imply. When discussing these guidelines, we use the term "interface" to ".

mean a relationship between a subprogram and (1) its users, (2) client
software, and (3) the environment (i.e., other software). Interfaces to users
consist of subprogram behavior. Interfaces to client software consist of the
things that software needs to be able to call and receive the subprogram
results (i.e., subprogram name and return type, parameter names, types, w:.
modes). Interfaces to the environment consist of what the subprogram
"imports" (e.g., globals, other subprograms) and what it "exports" (e.g., .
result values, access to some "protected" storage, say, in a package body). .

11-6.2.1 Subprograms in General

G6-1: Separate subprogram declarations and bodies for ease of
recompilation and modification.

(1) A subprogram declaration is a subprogram specification followed by a

semicolon. A subprogram specification provides the type of subprogram
(i.e., either procedure of function), parameter list, and return type for
functions.
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(Supports: 12, use with minimal modification; 7, separation of specification
and body).

As is the case with other program units, we expect that a common way to reuse
subprograms will be to write new bodies for existing specifications. A
collection of subprogram bodies corresponding to one specification may exhibit

different performance characteristics or implement different algorithms and
are thus useful. Separating subprogram declarations from bodies Will make
substitution of new or changed bodies and subsequent compilation easier.

Chapter II-10 states that packages are the "unit of reusability." Library
unit package specifications encapsulate directly reusable data and specifica-
tions of operations on data that characterize abstract objects; corresponding
package bodies encapsulate indirectly reusable implementation details of
operations and other data. Thus, subprogram declarations "belong" in package
specifications and corresponding bodies "belong" in package bodies (exceptbodies for main programs, see below). Since in Chapter II-7, we prescribe a

separation of library unit package specifications from their corresponding
(secondary unit) bodies, the separation of subprogram declarations and bodies
is "automatically" achieved.

. .G6-2: All reusable subprograms except a main program must be written
S.within a library unit package.

(Supports: 4, object-oriented software).

The library unit package is the "unit of reusability;" Chapter 11-10 explains
the reasons for this decision. Thus, reusable subprograms must be in
packages. These packages and their contents are the reusable software in a

,- software repository; they are "glued" together by a main program which is
invoked from the environment. If this gluing is automatic or easily ." .*

specifiable in a very high-level-language, main programs do not have to be
., P kept in a repository. It is the reusable parts that they glue together that

are important. However, if a main program glues together a "system" which can
be viewed as a potential component of other systems, then that program should
be put in a package which will be catalogued as directly reusable software.

G6-3: Use subprogram declarations to specify interfaces to reusable
objects. Use subprogram bodies to implement these interfaces and
properties of the objects.

(Supports: 8, low coupling; 13, insulation from the environment; 12, minimal
modifications necessary for reuse; 1, clear interface; 4, object-oriented);

The interfaces to reusable objects specified in subprogram declarations
comprise a name, parameters of particular types and modes, and return types

IF. .for functions. Subprogram bodies contain the executable code for reusable
objects. This code performs useful work. We are saying that the use of both
subprogram declarations and bodies is important. The only exception to this'
guideline is a main program callable from the environment rather than by other
software. In this case, a body alone is sufficient. This guideline is
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related to G7-2 prescribing that package specifications implement interfaces
to object abstractions and their bodies implement specific details of these

abstractions. . .

G6-4: Write subprogram Interfaces atan aporteabstract lvl

(Supports: 2, appropriate level of interface).

In Chapter 11-7 (see guidelines G7-2, G7-3) we recommend that the interfaces
to instances of reusable objects implemented in packages be subprograms whose
specifications are visible in the package specifications. Moreover, these
subprograms should all be at an equivalent abstract level. Lower-level
subprograms needed by the interface subprograms should not be included in the
specification but be declared either entirely within a package body or in a
separate package if they are themselves reusable. For example, the memory-
package in Chapter I1-7, Example 7-a should not mix operations on bits with
"read" and "store" operations on memory elements (i.e., words).

11-6.2.2 Subprogram Declarations

G6-5: First-level package-nested subprogram declarations should have a
standard format including regions for purpose, parameter descrip-
tions and associated documentation.

(Supports: 14, standard format; recommended Information and organization
supports: 11, documentation for findability; 9, readability; 1, interface
clarity).

Figure 116-1 shows an example format for a first-level package-nested
subprogram specification. Such a specification should contain at least this j
information, arranged in any reasonable way. While it is important that all
information in the template be available, it is not crucial that this
information be stored within source code. It is important, however, that the
format in which information is kept be the same for every first-level
subprogram unit in a particular library. In this guidebook, we include all
information in the template.
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•

I Procedure <procedure-name> <parameterlist>;
-- Purpose: !

I -- Explanation:
'I I -- Keywords:
• - -- Parameter Description: .,S-- Associated Documentation: .

a... Function <function name> <parameter list> return <typemark>;
-- Purpose:
1-Explanation:

.--- Keywords:
I -- Parameter Description:

-- Associated Documentation: ,

Figure 116-I: Subprogram Declaration Templates

Figure 116-I shows three fields, each with one or more subfields, I.-.

o The Purpose field contains a brief summary of the purpose of the
subprogram. The Explanation subfield includes enough information about the
particular interface to the object abstraction implemented (see Chapter
11-10) to determine if it is a potential candidate for reuse. This may

also include a description of the typical client of this subprogram. The
" .Keyword subfield contains keywords for use in cataloging the subprogram.

o The Parameter description field contains a brief explanation of each
subprogram parameter and return type for functions. Parameter and return

P value semantics in addition to those directly expressable in Ada should be
noted.

o The Associated Documentation field contains references to any documentation
associated with the subprogram specification, for example, requirements and

I.. design information. This is only necessary if additions or refinements to

1 the associated documentation field of the enclosing library unit or
secondary unit package are necessary.

Note that no Revision History field appears in the subprogram specification
template. This is because revision information will be contained in the
Revision History field of the enclosing library unit or secondary unit
package.

11-6.2.3 Subprogram Bodies
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G6-6: Secondary unit (subunit) and first-level package body nested
subprogram bodies should have a standard format, including regions
for revision history, purpose, associated documentation, parameter
description, assumptions/resources requied, side effects, diagnos-
tics, packages, data declarations, operations, and algorithmic
code.

(Supports: 14, standard format; recommended information and organization ;
supports: 11, documentation for findability; 9, readability; 1, interface
clarity; 6, scaffolding).

By secondary unst, we mean, a subprogram subunit that corresponds to a -.

subprogram body stub that appears in a secondary unit package body. These
subunits are at the "library level," are candidates for reuse, and must be
documented accordingly. Figure 116-2 shows an example format for secondary
unit or first-level package-nested subprogram bodies. Such bodies should
contain at least this information, arranged in any reasonable way.(1) While
it is important that all information in the template be available, it is not
crucial that this information be stored within source code. Tt is important,
however, that the format in which information is kept be the same for every e i

secondary unit or first-level subprogram body in a particular library. In
* this guidebook, we include all information in the template.

. Figure 116-2 shows eleven fields, each with one or more subfields.

" o The Revision History field contains a revision number, date, name of '- 4-

modifier, and description of changes made. The initial code is the first
revision. It is only necessary with secondary unit (i.e., subunit)
subprograms. Otherwise, revision data is contained in the corresponding '

field in the enclosing secondary unit package.

o The Purpose field has two subfields. The Explanation subfield contains a
brief description of the purpose of the subprogram and specific
implementation details that distinguish this subprogram body from others .4.
(e.g. performance characteristics, algorithms used, etc.) if they exist. ...

The Keyword subfield contains keywords (in addition to those in the
corresponding specification) used mainly to distinguish this subprogram
body from other bodies.

(1) In extreme cases, this may require use of multiple fields and/or subfields
with the same name. If this is necessary, we recommend using numbered
indices to indicate successive fields/subfields (e.g., Subprograms (1),
Subprograms (2), etc.).
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S[Seperate (parent unit-name)) -- for subunit subprograms only
Procedure <procedure name> <parameter list> is

I -- Revision History: %J.

' -- Purpose:
'I -- Explanation:

-- Keywords:
S -- Associated Documentation:

-- Parameter Description:
-- Assumptions/Resources Required:

" -- Side Effects:
I -- Diagnostics:

-- Packages:
-- Data Declarations:

-. -- Types:
-- Objects:
-- Operations:

'-'-- Subprograms:
-- Tasks:
-- Algorithm:
Begin ... End;

(Seperate (parentunit name)] --for subunit subprograms only
I Function <functionname> <parameter-list> return <type-mark> is

-- Revision History:
"..-- Purpose:
-" -- Explanation:

-- Keywords:
-- Associated Documentation:

"I -- Parameter Description:
-- Assumptions/Resources Required:
-- Side Effects:
-- Diagnostics:
-- Packages:
-- Data Declarations:

I-- Types:
I -- Objects:

-- Operations:
-- Subprograms:

-,-- Tasks:
I -- Algorithm:

Begin ... End;
-----------------------------------------------------------------------------

Figure 116-2: Subprogram Body Template
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o The Associated Documentation field contains references to any documentation
asSOCtated with the subprogram body, for example, requirements and design
information. This is only necessary if additions c- refinements to the -

associated documentation field of the enclosing secondary unit package are -
necessary.

o The Parameter Description field contains a brief explanation of each
subprogram parameter and the return type for functions, and clarificationsr

of araete seantcs, especially those that are peculiar to this
subprogram body and distinguish it from others that may exist. Just as
multiple package bodies corresponding to one package specification may be
Useful (see Chapter 11-7), so too may multiple subprogram bodies
corresponding to one subprogram declaration within a library or secondary
unit package. These subprogram bodies may implement different algorithms,
have different performance characteristics, and so on. To implement these
subprogram bodies and be consistent with our reusability guidelines, these
subprogram bodies must be written as subunits corresponding to body stubs
within secondary unit package bodies. While multiple source code versions
of a subunit subprogram body may exist, only one compiled version may exist
in an Ada library. This can be managed by a software base management L

system supporting reusability.

o The Assumptions/Resources Required field contains any assumptions made by
the subprogram body about conditions and/or resources required in its
environment. Such assumptions may include host/target machine, operating
system, physical devices (e.g. 1/O), runtime utilities required or auto-
matic interrupts affecting execution. This information need only be
supplied if the current subprogram body (1) is not a subunit, is contained
entirely within an enclosing secondary unit package body, and requires a
refined list of resources as compared with the package body, or (2) is a
subunit. Requirements for other modules are automatically documented in
the context clauses associated with the current subprogram body (assuming
it is a subunit) or the enclosing secondary unit package body.

o The Side Effects field documents all side effects caused by the execution
of any code in the subprogram body (e.g., changing of "global data"). Of
course, we encourage the minimization of side effects.

o The Diagnostics field contains an object-oriented description of error r
handling in this subprogram body and appropriate object-level exception
declarations. We are promoting error handling at as high a level as
Possible, so that a user of a subprogram body can understand error messages
with minimal familiarity with the details of the subprogram being reused.
Use should be made of object level exceptions declared in an enclosing
package scope. See Chapter 11-7' and the package template diagnostics
field. This planned approach to error handling is a form of scaffolding
suggested in reusability characteristic A6.

o The Packages field contains packages nested within the subprogram body.

o The Data Declarations field contains two subfields, Types and Objects; they.

contain type and object declarations with associated documentation.

112 March 1986



Subprograms

o The Operations field contains two subfields, Subprograms and Tasks; they
i g contain declarations and bodies of nested subprograms and tasks.

o The Algorithm field contains the block associated with the subprogram body.
* The block should comprise commented code and exception handlers for

exceptions raised during execution of this code and/or propagated excep-
"tions raised by nested subprograms and task bodies.

G6-7: Write subprogram bodies to effectively handle interaction with/

effects on their environment.

(Supports: 3, minimal interference with the environment).

When one attempts to reuse code, one often discovers that a small modification
• in the environment is required to make that program perform correctly.

However, after the program runs, the environment must be restored to enable
environmental software to function properly. If this setting/restoration
cannot be done, then the subject code cannot be reused. To manage this
setting/restoration, a set of O-functions (object-changing functions) and
V-functions (value-returning functions) is required. See Example 6-a.

Example 6-a:

Procedure example is
desired XYZ, saved XYZ: XYZ state;

procedure set XYZ state (XYZ : in XYZ state);
procedure get-XYZ-state (XYZ : out XYZ state);

P begin

Get XYZ state (Saved XYZ); -- save environmental state;
" - Set XYZ state (Desired XYZ); -- change environmental state;

perform desired reusable action;

Set XYZ state (Saved XYZ); -- restore environmental state;

end example; "

Thus, as in Example 6-a, subprogram bodies that must alter an environmental
parameter must save and restore it before and after execution of the main-line
code in order to be reused with no lasting adverse effect on its environment.
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G6-8: Write subprogram bodies with one normal exit and a grouped set of
abnormal exits via exception handlers.

(Supports: 14, standardization; 9, readability; 12, modifiability).

Function subprograms in Ada must contain at least one return statement; -
procedure subprograms may contain zero, one or more return statements. What
we propose here is one normal (i.e., error-free) return or exit place and a - __
grouped set of error exists for every subprogram. Among other things, this
guideline implies that procedures should not contain any return statements and
that their normal exit is at the end of their non-exception algorithmic code.
This enhances readability in that a user knows where to look for subprogram
exits; it enhances modifiability in that the exits that may need changing in
order to reuse subprograms are in standard positions. See Example 6-b. .

Note that this guideline implies an exception handler with an "others"
alternative is a minimum requirement for all subprograms in which any
exception (predefined or user defined) can be raised. This "others" alterna-
tive will (minimally) satisfy the grouped set of error exits suggested above. .

Example 6-b:

Function A return B type is
c: B type;

begin L
-- code to calculate c;

return c; -- one normal exit; "

exception ,
when others => -- grouped set of abnormal exists;
raise object level exception;
return c;

end A;

- - - - - -

G6-9: Write subprogram bodies to pass results back to callers rather
than use results to effect their function.

(Supports 5, no side-effects).

We write subprograms to produce some result. This result should be
predictable. One way to make it predictable is to always pass results of
execution back to client software callers and let them decide how to handle ,*.

errors and/or how to proceed. This is especially important for function
subprograms. Function calls appear in expressions that depend on calculated
values they return. Calls to functions written "without side-effects" in £
expressions can make evaluation of expressions a standard, understandable
process. Procedures written with out or in out parameters to pass back
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results of processing give client software callers an opportunity to use these
results in their processing. For both procedures and functions, some kind of
status information indicating whether any errors have occurred in processing
is recommended (where errors are possible). Exceptions can be effectively
used here. In general, following this guideline will help produce code that
is composable and thus reusable in multiple environments.

II-6.2.4 Formal Parameter Modes

G6-10: Exploit formal parameter modes to clarify subprogram interface

semantics.

(Supports: 1, interface clarity).

As [DOD83] states:

"A formal parameter of a subprogram has one of the three following modes:

in The formal parameter is a constant and permits only reading of the
value of the associated actual parameter.

in out The formal parameter is a variable and permits both reading and
updating of the value of the associated actual parameter.

U out The formal parameter is a variable and permits updating of the
value of the associated actual parameter."

• These modes should be used to constrain use of parameters to their intended
function. Parameter modes should be appropriate to their function and
parameter types should be appropriate to their expected values. Parameter

.P modes in Ada provide a convenient way for programmers to express the semantics
of their ideas in source code and let the language enforce these semantics.
See Example 6-c.

Example 6-c:

Subtype value is Integer range 0...100;

Procedure Read (X: out value); -- X can only be updated;
Procedure Write (X: in value);-- X can only be read;
Procedure Test and Set (X in out value); -- X can be read

and updated;

'," .. ,,

::: .5'-. .
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11-6.2.5 Subprogram Calls, Default Parameters and Parameter Associations

G6-11: Use default parameters to generalize the context of a reusable
subprogram; write complete subprogram specifications.

(Supports: 10, balance between generality and specificity).

This guideline says write a "complete" specification for every subprogram
(i.e., provide parameters for its anticipated range of uses) even if one "
initially implements the code to use some but not all of the parameters or
their values. Use default parameter expressions to give values to the "extra" 

* parameters.

Whenever we write source code, we implicitly write it to exist in a particular
environment. In that environment, there are objects, such as non-local data
or procedures that the code uses, but are not explicitly specified. An
attempt to reuse the code in another environment may fail because one of the -.

implicit parameters is no longer the same. (Note that generic formal _

parameters would need to be used to specify subprogram parameter defaults.
See Chapter 11-12). Thus, when analyzing the requirements for a subprogram
look at general needs as well as the needs at the current time. Always ask
the question, "In what larger context could this be used?". Example 6-d shows
an interface which precludes broad reuse, and better interfaces which facili-
tate reuse.

Example 6-d:

procedure Put (Item: in Character); -- too restrictive, allows
-- output to only the "default-- place" .

procedure Put (
Item: in Character;
In Stream: in Stream :- Standard 10 Stream); --better declarations -

-or-

procedure Put (
Item: in Character;
In Window: in Window := Standard IO Window);

Procedure Put, as defined by the first declaration in Example 6-d can only be
used if its environment provides "global" default targets for its outputs or
it is accompanied by a pair of definitions such as: ,

Set Standard_10Stream (StandardIO Stream: in Stream);
and

Get Standard 10 Stream (Standard 10 Stream: out Stream);
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Note that it is NOT necessary for procedure Put to be able to handle output on
* multiple streans/windows for its initial implementation. However, successive

versions of Put can include code to handle additional streams/windows. To
* elaborate, the first implementation of Put might be written to simply test the

default parameter value (i.e., In Stream), and reject any value but the
default. A second implementation might handle some subset of streams while a
final one might handle all.

~ F No module using Procedure Put would need to be rewritten to use the increased
actual function in subsequent implementations. New code can be written for
the increased function without making the old obsolete, thus keeping it

* logically as well as physically reusable.

* G6-12: Group all default parameters in subprogram parameter specifica-
- tions at the end of the specifications.

(Supports: 14l, minimize interference with environment; 12, ease of modifica-
tion).

This guideline facilitates successive refinement of subprograms in three ways: C
(1) Adding to or modifying a subprogram's default parameters will not
interfere with those client modules currently depending on it. Calls to a
subprogram with default parameters need not supply values for these
parameters. Therefore, addition of default parameters at the end of a
parameter list or modification of existing ones will likely have no effect on
subprogram calls from the environment since the calls can remain the same; (2)I Changing the value of a default parameter is easier than changing code in the
subprogram body proper (although recompilation will be required); (3) Changes

-. to default parameters will all be done in one standard place. This will
-' - ~ simply make changes easier, especially in long, formatted parameter lists.

G6-13: Use named parameter associations for calls on subprograms with
more than three parameters or In any case for interface clarity.

* (Supports: 1, interface clarity; 9, readability).

-- Calls to subprograms with more than three parameters can easily be confusing,
especially if the parameters can take on values of similar types. Use of
named parameter associations takes more effort when writing code than using
positional associations. However, it clarifies subprogram interfaces from the
client software or caller's point of view. It clearly states for reusers of
the client software which "values" are intended for which parameters of called
subprograms. Also, assuming descriptive formal parameter names are used in
the specifications Of subprograms, it provides an indication of parameter
semantics at the points where these subprograms are called.

* 11-6.2.6 Overloading of Subprograms

G6-14l: Minimize subprogram overloading. 7
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*(Supports: 9, readability; 13, insulation from the environment).

*Overloading allows the same subprogram name to be reused everywhere it may be
meaningful or appropriate. However, readability and understandability
decrease drastically when code contains several instances of an overloaded

* name, each instance bound to a different definition.

Overload resolution occurs at compile time. When an overloaded subprogram
name is used, the compiler disambiguates the name depending on: (1) what -

definitions of the name are visible, (2) the types and numbers of parameters
*associated with the use of the name, and (3) for functions, the return type
*required by the context in which a function name is used. All three of these
* factors are determined by the context of use, that is, the name to type

bindings in force when the overloaded subprogram name is used. Changes in the
context of use of an overloaded subprogram that lead to erroneous and/or
unintended results may not be caught by an Ada compiler, while the same
context change will likely flush out erroneous effects on non-overloaded
entities.

* Example 6-e:

4LHS,x: Integer;
y,z: Float;

FuncionExaple A, : Foat)Retrn loatis -(1

Function Example (A, B: Float) Return Flotr is ... --() :J
Function Example (A, ner B: Float) Return Fge is... --(

LHS : Example(Example(X,Y), Z);1!

* In Example 6-e, the innermost call to function Example in the expression for
LHS resolves to overloaded definition (3) and the outermost to overloaded- .
definition (2). This is not obvious however and at a minimum, lowers program

* readability. Definition (1) of Example is not used. To show how volatile a-
change in context can be, assume the user provided a context with y, and z
both of type FLOAT but "inadvertantly provided x of type FLOAT rather than
INTEGER; then the inner Example function call would resolve to overloaded
definition (1) while resolution of the outermost call would remain unchanged. p
While this was not what the programmer or reuser intended, no compiler error
will res-ult since the compiler can find a valid albeit incorrect resolution
for the expression's components. If overloaded Example functions were not
used, as in Example 6-e, name resolution would fail since a definition
appropriate to each function call would not be found. (See Example 6-f.) The
code of Example 6-f is more "insulated" from its context or environmental
namespace or at least insulated from a complicated environment because it

* ~admits only one interpretation. . .-
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Example 6-f:

LHS : Integer;
x,y,z: FLOAT;

Function Example 1 (A, B: Float) Return Float is...
Function Example 2 (A, B: Float) Return Integer is...
Function Example-3 (A: Integer; B: Float) Return Float is...

LHS := Example 2 (Example 3 (x,y) z); -- compiler will find no Sf
definition for Example_3
with two Float parameters.

. The potential complications of overloading described above will most likely
occur if reuse takes the form of combining code fragments together rather than
combining entire modules through use of "with" but not "use" context clauses
and previously compiled library units. Minimizing use of use context clauses
will provide some help to insulate subprogram names from context changes since
references to all names declared within named packages must be fully quali-
fied. Thus, a change in context implemented by a change in packages

• -referenced in a context clause will require explicit changes in subprogram

calls and no unintentional results as described above with respect to Example

If a "new" context for the assignment statement and declarations in Example
6-e contained an exact duplicate declaration rather than a legal overloaded

* . declaration of one or more of the Example functions, a compiler would catch
one or more illegal homographs. 6

11-6.3 GUIDELINE/CHARACTERISTIC CROSS REFERENCE

Figure 116-3 provides a cross reference between the reusability guidelines
presented in this chapter and the characteristics in Chapter I-2.

H . C u Se s r
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GuidelineReusability Characteristic i, 1:%~1

16- 2X 0 1 2 1 4 1

G6-1 x x
* G6-2 x x

G6-3 x
G6-4 x
G6-5 K

*G6-60 X xx
* G6-71 x

G6-92 x

G6-13 x
*G6-14 x x

Figure 116-3: Guideline/Characteristic Cross Reference
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11-7 PACKAGES ,A.

IVV11-7.1 ADA SUMMARY

Packages are one form of Ada program unit. They allow conceptually related
I . entities such as type and object declarations and callable operations to be .

grouped together. Packages have specifications and bodies. Package specifi-
*: cations contain a public part that is visible (that is, referencable) by

client software and a private part that is not. Package bodies contain
implementation details, e.g., data, subprograms and tasks; their contents are
not visible to client software. A common use of packages is to provide data
and specifications for operations (subprograms or tasks) on this data in
package specifications and corresponding bodies for these operations in
associated package bodies.

This distinction between public and private parts of a package can be used to
separate logical properties of data that should be used by client software
from properties that should be used only by the package itself. Operations on
private types declared within a package are limited to implicit operations(1)

.- and explicit operations declared within the package specification. 0 1

11-7.2 GUIDELINES

., *..The following guidelines for writing Ada packages support mainly the feasibil-
ity for reuse metacharacteristic and give some support to findability and
understandability.

Packages have been selected as the encapsulation mechanism for reusable
". software. This is their role in our reusability scheme; we deal with that

role in Chapter II-10. Here we present guidelines for creating packages that
are reusable because of the nature of their design and code.

When considering what information potential users of a package need to
convince themselves that the package provides a desired function, an important
point becomes apparent: There are details a potential user may need to see
that are irrelevant to client software (e.g., the structure of a particular
type or object). While we hope that eventually software reuse will not
involve examining those details, we feel that it is an important aspect to
consider today. Providing all implementation details in the package specifi-
cation would defeat Ada's information hiding benefits. Those details will r

(1) The implicit operations are: assignment (unless the type is limited),
selected components for discriminant selection, membership tests, qualifi-

V- cation, explicit conversions, attribute operations, and unless the type is

limited, comparison for equality and inequality.
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appear in the private parts of package specifications and in package bodies.
Because those details may be examined by humans, private parts of package 2.
specifications and package bodies must to some extent be written according to F
reusability guidelines. Obviously, the visible part of package specifications
must obey reusability guidelines.

Details which users need to know and which cannot appear in package specifica-
tions include, for example, information that distinguishes one package body
from another, where both correspond to the same package specification. This
information must reside in the bodies. To discover this information, users :

+ must examine the bodies directly.

Therefore, different guidelines in this chapter support each of two sometimes *..

conflicting goals: (1) using Ada language constructs to facilitate reuse by

client software (e.g., information hiding) and (2) using Ada language con-
structs to facilitate reuse by a user. In the future, automatic extraction of
information about package specifications and bodies can make this conflict
disappear.

II-7.2.1 Package Structure

G7-1: Write library unit package specifications and bodies in separate
files for ease of recompilation and modification.

(Supports: 12, use with minimal modification; 7, separation of specification
from body).

We expect that a common way to reuse software will be to write new package
bodies for existing specifications. A collection of package bodies
corresponding to one specification may exhibit different performance charac-
teristics or implement different algorithms and are thus useful. Using
separate files for package specifications and their bodies will make substitu-
tion of new or changed bodies and subsequent recompilation easier.

G7-2: Use package specifications to specify the interface to object
abstractions; use package bodies to encapsulate
implementation-specific details of these abstractions not needed
by client software.

(Supports: 8, low coupling; 13, insulation of a component from its environ-
ment; 12, use with minimal modification; 1, clear interface; 4, . "
object-oriented);

Simply stated, decide what object abstraction a package should implement,
decide what the interface to this abstraction should be, and implement these . .
as visible specifications for operations on data in the public part of a
package specification. Decide what the implementation structure of the
abstraction should be and implement this and all other details in the private
part of the package specification and a corresponding package body. This
separation benefits the package itself and its environment. The less "connec- -.

1.. M'.. 9
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tion" a package has with the outside world (e.g., the smaller the visible part
of' a package specification), the lower its coupling with other modules. Once1wmodules in a package's environment begin to depend on particular visible

6 entities that really should have been hidden, the package becomes less and
., 14less insulated from its environment.

Assume the declaration of a subprogram or task serving as an interface to a
reusable object is contained in a package specification and the corresponding

OL ~ body is contained in a corresponding package body. When the subprogram or%
task's data structures and operations but not its interface need modification,
only the package body will need to be recompiled.

There are two strategies for providing abstractions as reusable objects

[BOOCH85]:

o Provide the basis for multiple "public" reusable objects with common
operations on the objects. Do this by writing type declarations and
specifications for operations on data of these types in package specifica-
tions and implementations of the operations in corresponding package
bodies. The object abstraction can then be reused by client software -

(multiple times) by declaring variables (external) to the package and using
the operations provided by the package to manipulate these variables.

o Provide single, sharable, "private" reusable objects and operations on
these objects. Do this by encapsulating types of reusable objects in
package bodies. This limits client software from declaring and usingii multiple instances of the reusable objects since their types are hidden.
Provide specifications for operations on reusable objects in package

* . specifications. Provide variable declarations for the reusable objects and
* implementations of operations on the objects in corresponding package

bodies. These operations must be parameterless I, the case where the types
of the reusable objects are not "composite." These operations may contain

P parameters if the types of the reusable objects are "composite," and
"atomic" public types from which these types are constructed are declared
in package specifications. Client software can only reuse the specific
instances of object abstractions contained in these packages. This
software can only indirectly access the variables implementing reusable
objects through interfaces provided by visible subprograms specified in the
package specifications. Note: The only way to obtain multiple instances
of these object abstractions would be to use generics. See Chapter 11-12.

The first strategy is fairly straight-forward and we will not provide an
example of it. However, we do provide Example 7-a as a sample of the second
strategy. Consider a memory package that forms part of the simulation of a
computer. One memory Is simulated and access to its contents is provided
through special routines. "tAtomic" types for memory location and
memory-elements are declared in the package specification, along with opera-
tions "read" and "store" specified with parameter and/or return values of
these types. The actual object (variable) that implements memory,
main-memory, is of type memory type which is built up from these atomic types.
Both the reusable object (main memory) and its associated type declaration
(memory type) reside in a corresponding package body hidden from direct use by
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client software. Main memory can only be indirectly referenced with" read"
and "store" operations. Direct reference to memory could have been achieved
by placing the declaration for memorytype and the variable declaration for
main-memory in the visible part of the memory package specification. However,
this would have created an open-ended, unclear, unpredictable interface to
memory. With direct access to memory, any client software can reference and
possibly change any memory location in any way it wants. Specifying indirect
access to memory as in Example 7-a, provides a standard and clear interface. r
The "read" and "store" subprograms which make up this interface could possibly

Implement memory access synchronization. This synchronization, while impor-
tant, would be hidden from client software due to its implementation in the
subprogram bodies for "read" and "store" in the memory package body.

Example 7-a:

Package Memory is
Type memory location is range 0..3000;
Type memory element is array (INTEGER range 0..31) of BOOLEAN;

Function Read (X: memory location) return memory element;
Procedure Store (X: memorylocation; Y: memoryelement);

End Memory;

Package Body Memory is
Type memorytype is array (memory location) of memoryelement;
Main-memory: memorytype;
Function Read.. .end Read;
Procedure Store.. .end Store;

End Memory; OR
------ ------ -----

We recommend using separate compilation, body stubs, and subunits to achieve
modifiability and modularity. While it is important to package-up all the
data and operations associated with a reusable object, body stubs in package
bodies can be used to achieve the required modularity. See Chapter II-10, for
further details.

G7-3: Packages should implement interfaces to reusable objects at a

consistent abstract level.

(Supports: 2, appropriate abstract level;)

As stated above, we recommend that the interfaces to instances of reusable
objects implemented in packages be subprograms and/or tasks whose specifica-
tions are visible in the package specifications. Moreover, these subprograms J
and tasks should all be at an equivalent abstract level. Lower-level
subprograms, for example, needed by the interface subprograms or tasks should
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not be included in the specification but be declared either entirely within a
package body or in a separate package if they are themselves reusable. For F
example, the memory package in Example 7-a should not mix operations on bits
with its "read" and "store" operations on memory elements (i.e., words). An
excellent example of layered abstractions is provided by the Graphics Kernal
System (GKS) [HARRIS85].

I 11-7.2.1.1 Package Specifications and Declarations

G7-4: Library unit package specifications should have a standard format,
including various regions for revision history, purpose,
associated documentation, diagnostics, packages, data
declarations, operations, and private types.

(Supports: 14, standard format; recommended information and organization
supports: 11, documentation for findability; 9, readability; 6, scaffolding;
1, interface clarity).

Figure 117-1 shows an example format for a library unit package specification.
A library unit specification should contain at least this information,
arranged in any reasonable way.(1) While it is important that all information
in the template be available, it is not crucial that this information be
stored within source code. It is important, however, that the format in which
information is kept be the same for every unit in a particular library. In
this guidebook, we include all information in the template.

(1) In extreme cases, this may require use of multiple fields and/or subfields
Iwith the same name. If this is necessary, we recommend using numbered

indices to indicate successive fields/subfields (e.g., Subprograms (1),
Subprograms (2), etc.).
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Package <package-name> is -

Revision History:
--Purpose: ''
-- Explanation:
-- Keywords:

-- Associated Documentation:
Diagnostics:

-- Packages:
-- Data Declarations:
-- Types: .
-- Objects: "
-- Operations:
-- Subprograms: .
-- Tasks: .
-- Private:

End <package name>; -,

Figure II7-I: Package Specficiation Template

Figure 117-I shows eight fields, each with one or more subfields.

o The Revision History field contains a revision number, date, name of -"

modifier, and description of changes made. The initial code is the first
revision.

o The Purpose field contains a brief summary of the purpose of the package.
The Explanation subfield includes enough information about the object
abstraction implemented (see Chapter 11-10) to determine if it is a
potential candidate for reuse. This may also include a description of the
typical client of this package. The Keyword subfield contains keywords
used to catalog the unit.

o The Associated Documentation field contains references to any documentation
associated with the package specification, for example, requirements and
design information.

o The Diagnostics field contains object-level exception declarations which
explain errors at the object-astraction level rather than at the level of
the code that implements the abstraction. We are promoting high-level .- .
error handling so that a a user of A package can understand errors without
knowing the package body details. These object-level exceptions will be
used by clients of the package and in corresponding package bodies. This
approach to error handling is a form of the scaffolding promoted in ," ,.-
reusability characterstic 6. u r

o The Packages field contains specifications of nested packages.
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o The Data Declarations field contains two subfields, Types and Objects; they
contain type and object declarations with associated documentation.

o The Operations field contains two fields, Subprograms and Tasks; they
contain specifications of the subprograms and tasks encapsulated in this
package.

o The Private field contains full type definitions for corresponding partial
... definitions given in the Types subfield. This is required by the Ada

language.

For languages other than Ada we would suggest a dependency field to list other
software modules required by the current one. In Ada this is automatically
documented in context clauses on package specifications.

Specific resources required, such as host operating system, should be
specified in the corresponding package body or bodies.

As discussed in Chapter 11-10, we recommend that only first-level nested
non-package entities in library unit package specifications form the basis for
catalogued directly reusable objects/software.

11-7.2.1.2 Package Bodies

G7-5: Secondary unit package bodies should have a standard format
including regions for revision history, purpose, associated docu-
mentation, assumptions/resources required, side effects, diagnos-
tics, packages, data declarations, operations and initialization
code.

(Supports: 14, standard format; recommended information and organization

supports: 11, documentation for findability; 9, readability; 6, scaffolding;
1, interface clarity).

Figure 117-2 shows an example format for a secondary unit package body. A
secondary unit body should contain at least this information, arranged in any
reasonable way.(1) While it is important that all information in the template
be available, it is not crucial that this information be stored within source
code. It Is important, however, that the format in which information is kept
be the same for every unit in a particular library. In this guidebook, we
include all information in the template.

(1) In extreme cases, this may require use of multiple fields and/or subfields
with the same name. If this is necessary, we recommend using numbered
indices to indicate successive fields/subfields (e.g., Subprograms (1),
Subprograms (2), etc.).
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Figure 117-2 shows ten fields, each with one or more subfields. The Revision
History, Associated Documentation, and Data Declaration fields have the same [
purpose as their counterparts in the package specification template above.

o The Purpose field has two subfields. The Explanation subfield contains a
brief description of the purpose of the package and specific implementation e
details that distinguish this package body from others (e.g. performance
characteristics, algorithms used, etc.) if they exist. The Keyword
subfield contains keywords (in addition to those in the corresponding -.

specification) used mainly to distinguish this package body from other
bodies.

I Package body <package name> is + -

-- Revision History:
I -- Purpose: .
-.- -- Explanation: -
"I -- Keywords: -
-I -- Associated Documentation:
"" -- Assumptions/Resources Required: -
+I+ -- Side Effects: I -
1.. -- Diagnostics: .
" -- Packages:
--- Data Declarations:

-- Types:
-- Objects:
-- Operations:

I -- Subprograms:
-- -- Tasks:
I -- Initialization: I

[begin

[exception]] .

end [<packagename>];

Figure 117-2: Package Body Template

o The Assumptions/Resources Required field contains any assumptions made by r
the package body about conditions and/or resources required in its environ-
ment. Such assumptions may include host/target machine, operating system,
physical devices (e.g. I/O), runtime utilities required or automatic
interrupts affecting execution. Requirements for "withed" modules are
automatically documented in the context clauses on this package body and
its corresponding package specification.
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o The Side Effects field documents all side effects caused by the execution
of any code in the package body (e.g., changing of "global data"). OfOF course, we encourage the minimization of side effects.

o The Diagnostics field contains an object-oriented description of error u,
handling in this package body and appropriate object-level exception 46

declarations supplementing those found in the corresponding package speci-
fication. We are promoting high-level error handling so that a user of a
package can understand errors without knowing the package body details.

" - These object-level exceptions will be used by clients of the package and in '-

corresponding package bodies. Ths approaich to error handling is a form of
the scaffolding promoted in reusability characterstic 6.

o The Packages field contains bodies of visible packages whose specifications
appeared above in the corresponding package specification. It can also
contain declarations of additional packages.

o The Operations field contains two subfields, Subprograms and Tasks; they
contain the bodies of visible subprograms and tasks whose specifications
appeared above in the corresponding package specification. They can also
contain declarations of additional subprograms or tasks.

o The Initialization field contains the block associated with package bodies.
This block contains commented data initialization code and exception
handlers for exceptions raised during execution of this code and/or
propagated exceptions raised by nested subprograms and/or task bodies.

" .II-7.2.2 Private Type and Deferred Constant Declarations
4'. -. . .

G7-6: Use private or limited private types and the private part of
package specifications to restrict client software's view of data
and operations on that data.

(Supports: 8, low coupling; 13, insulation from the environment).

For the same reasons given in the discussion of guideline G7-2, using
_ private/limited private types and the private part of package specifications

can minimize module coupling and Insulate modules from their environment.
Private types allow strict specification of client software's view of a
package. As stated in EDOD83],

- -~"The declaration of a type as a private type in the visible part of a
package serves to separate the characteristics that can be used directly
by outside program units (that is, the logicial properties) from other
characteristics whose direct use is confined to the package (the details
of the definition of the type itself)."

The structural characteristics of private types are invisible outside the

package specification in which they are declared. Private types have
associated implicit operations (such as assignment, comparison for equality
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and inequality) as well as explicit operations detin.u vy subprograms with a
* parameter or result type of the private type. These explicit operations can

redefine and hide implicit ones. Additional implicit operations declared by ,_
" the corresponding full type declaration are also available inside of the

package itself (e.g., arithmetic operators). Limited private types are even -.
more restrictive. Assignment, equality and inequality operators are not

• .- implicitly declared. "

Example 7-b taken from [DOD831 illustrates the power of private types. W!

Example 7-b:

package 10 PACKAGE is
type FILE-NAME is limited private: - '

procedure OPEN (F : in out FILE NAME);
procedure CLOSE (F : in out FILE NAME);
procedure READ (F : in FILE NAME; ITEM : out INTEGER);
procedure WRITE (F : in FILE-NAME; ITEM : in INTEGER);

private
type FILE NAME is

record
INTERNAL NAME : INTEGER : : 0;

end record;
end I0_PACKAGE;

package body 1 0 PACKAGE is
LIMIT : constant : 200;
type FILE DESCRIPTOR is record ... end record;
DIRECTORY : array (1 ... LIMIT) of FILE DESCRIPTOR;
proce e ON (F : in o

procedure OPEN (F : in out FILE NAME) is ... end;
procedure CLOSE (F : in out FILE NAME) is ... end;
procedure READ (F : in FILE-NAME : ITEM : out INTEGER) is.. .end;

." ~procedure WRITE (F : in FILE-NAME : ITEM : in INTEGER) is.. .end; ."

begin

end I- OPACKAGE; "

In Example T-b, File Name is a limited private type. It has only four
operations, and these are explicitly given in the package specification:
open, close, read and write. Other operations such as assignment and ,-.
comparison for equality are not allowed. In this case, the writer of the
package completely restricts client software's view of file structures and the
operations that can be performed on them by exploiting Ada language features . .
that allow accurate specification of how the client can use the code.

130 March 1986

• r:



Packages

11-7.2.3 Additional Considerations

The Ada Language Reference Manual [DOD83] contains some rather detailed rules

for private types, their implicit and explicit operations and deferred y7.
constant declarations. We advise their user to read the manual carefully when
incorporating these constructs into a package.

In guidelines G7-4 ad G7-5 we advocate use of standard templates for package
specifications and bodies. One field in the templates is the Revision History
field. In it is a history of the changes made to a package since its :JOIN

"" creation. Analogous to this to further support reusability, we suggest a -

"reusability history" be kept on reusable packages. This history can help us
to study reusability and suggest ways to reuse software to other "potential
reusers." Automated tools to collect/retrieve this information and a software
base in which to store it are desirable.

,:: :11-7.3 GUIDELINE/CHARACTERISTIC CROSS REFERENCE :

Figure 117-3 provides a cross reference between the reusability guidelines
-" presented in this chapter and the characteristics in Chapter 1-2.

Reusability Characteristic

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Guideline

- G7-1 X X

G7-2 X X X X X
G7-3 X

. ." G7-4 X X X X X
G7-5 X X X X X

" -- G7-6 X "X

--------------------------------------------------------------------------

Figure 117-3: Guideline/Characteristic Cross Reference

-1
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11-8 VISIBILITY RULES

11-8.1 ADA SUMM4ARY

Ada visibility rules define where in program text identifiers, other symbols,
and operations are visible. Use clauses allow direct visibility of declara-

tions appearing in visible portions of package specifications. Renaming ~ E
declarations can be used as shorthand notations and to resolve name conflicts.
Package Standard is a predefined package containing standard types (i.e.,
BOOLEAN, INTEGER, .. ) and forms a declarative region that effectively
encloses every library unit [D0D831.

11-8.2 GUIDELINES 
h4

This chapter's guidelines for use of Ada visibility rules support about
one-third of the reusability characteristics described in Section I. They I

center around writing software that requires minimal modification for reuse ~
and minimizes interference with/maximizes insulation from its environment.

11-8.2.1 Use Clauses

G8-1: Do not use "use" context clauses.

(Supports: 12, minimal modification of software; 3, minimal interference with '

the environment).

* The "use" context clause can lead to ambiguous and/or unexpected results .

* because of Ada visibility rules. For example, in Example 8-a, the developer K
of package body B expected the reference to E type to resolve to E_-Type from
package C. Package C was "withed" and "used" to do this. However, Ada's
visibility rules caused the E Type from the package specification for A to be
used. This happened because r1) package A also declared a type named E-Type,
(2) package A was "withed" and "used" in context clauses on the package
specification for B, and (3) the E Type declared in package A hides E Type
from package C.
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*. Example 8-a:

--assume packages A and C exist and both declare type E type--

With A; Use A;
Package B is

end B;

With C; Use C;
Package Body B is

Procedure D is
For I in E type'first ...E type'last Do
LOOP

- -- E type from Package C expected; E type from package A used.

end LOOP;
end D;

end B;

- -,- --

Identical identifiers and subprograms with the same parameter and result type
profiles (i.e., homographs) will not be made visible by use of two "use"

clauses for the packages that contain them, leading to unexpected results, as .. '. -

in Example 8-b.

" Example 8-b:

" --Assume both packages A and B exist and declare type E Type.

With A; Use A; With A,B; Use A,B;
Package C is Package C is
x E type; x : Etype; --E type will be unresolvable

--unless fully qualified as
ed ." -- A.E type or B.E Type.

end C; end C;
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In Example 8-b, assume package C is "catalogued" for reuse. In (1), the
E Type defined in package A is visible and used in package specification C.
However, assume that in order to reuse package specification C, a reference to .
package B in a context clause as in (ii) is needed. If packages A and B both
declare type Etype, Ada language rules state that neither EType from package :.
A nor EType from package B is visible in package C because any reference to
E Type would be ambiguous. Thus the reference to Etype will be unresolvable
unless it is fully qualified; that is, written as either A.E type or B.Etype.
A change to package specification C will have to be made, one that would have
been unnecessary if no use clauses were used originally and fully qualified
names were used within C. Package specification C, written with a use clause
for A, interferred with the environment for reuse for C. Again we see that
"use" clauses can lead to confusion and necessitate changes unforseen during
original development.

11-8.2.2 Renaming Declarations

G8-2: Use renaming declarations to resolve name conflicts with the L .:
environment.

(Supports: 9, readability; 13, insulation with the environment).

Renaming declarations can improve readability in that expanded names for
packages, for example, can be "replaced" with simpler names. Note that after
renaming declarations are used, both the old and new names are visible. They
can be used to resolve name conflicts that arise due to the use of use clauses
by providing distinct and simpler names for identically-named constructs in
two or more packages. Without use clauses, these names would have to be fully
expanded to be visible. However, we have already recommended that use clauses
not be used (see above).

In addition, renaming declarations are a language-supported way of specifying
"services" or "entities" required from the environment, as in Example 8-c. In
this context renaming enforces nothing, but if it is used consistently, it is
a form of documentation.

.- ,F
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Example 8-c:

Package Stack is . "
Procedure Push ...
Procedure Pop ... ;
Procedure Top ... ,;

end Stack;

With Stack;

Package Menu Manager is
Procedure Enter New Menu renames Stack.Push;
Procedure Return To Previous Menu renames Stack.Pop;

end Menu Manager;-

Example 8-c shows a somewhat rudimentary form of insulation from the environ-
ment in that "local" redeclarations of "services" provided by the environment C-
are given within a reusable software module. If the environment changes, it
is obvious what its effect will be on the reusable module. Contrast this with

, , : an "undocumented", complex interaction of a "reusable" module with its
*. environment and the effect of an environmental change. In the example,
' -. package Menu Manager requires services from package Stack. These services are

explicitly called out in the renaming declarations. If package Stack were
changed, it would be obvious if the change affected package Menu Manager,
i.e., a change to Stack.Push or Stack.Pop would affect Menu Manager while a
change to Stack.Top would not. (We distinguish between simply having to
recompile MenuManager if the specification for Stack changes as opposed to
having to change something in Menu Manager in addition to recompiling it).

- G8-3: Use renaming declarations to facilitate modifying reusable

software to represent new object abstractions.

(Supports: 12, modifiability; 4, object-oriented software).

We assume that subprograms with the right functionality but wrong names and
parameter names to fit an object abstraction will be available fairly often.
The same is true for the names of exceptions, variables, and packages. To

• .illustrate this guideline, we will use subprogram renaming.

Renaming subprograms allows a user to introduce new parameter names and
default expressions that differ from those in the renamed subprogram.
Renaming minimizes the work necessary to reuse a subprogram since no
recompilation is required. Thus, a subprogram can be reused without ,*# ,

recompilation by using a renaming declaration to (1) change a default
expression for a parameter of mode in, or, (2) change the subprogram name,
parameter names, and/or possibly default parameter expressions. Option 2
facilitates translation between object abstractions; this is important to
reusability "aesthetics." See Example 8-d. (Example 8-c also illustrates

" . this guideline, but to a lesser extent).
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Example 8-d:

Package Ballistic MissileMenuManager is
Type targettype is range O..50;
Function Create Ballistic Missile Menu

(target-selection: targettype

Procedure PrintBallisticMissileMenu ... ;

end Ballistic Missile MenuManager;

With Ballistic MissileMenu Manager;
Package Financial Operations is
Subtype operation type is

Ballistic Missile Menu Manager.target type range 0..10;
Function Create Financial Ops Menu (ops selection: operation type

renames Ballistic Missile Menu Manager.Create Ballistic Missile Menu;
Procedure Print Financial Ops Menu

renames Ballistic Missile Menuanager.Print Ballistic Missile Menu;

end Financial Operations;

11-8.2.3 Package Standard r

G8-4: Do not hide package standard.

(Supports: 3, minimal interference with the environment; 9, readability).

Ada provides package standard as the environment for all programs. Using the
identifier "standard" for a user defined package or other declaration will
hide package standard. This will interfere with its use and be confusing to ,"
the user of the software. Hiding of package standard may be acceptable in a
software module's initial context but when its extended context for ' -"
reusability is considered, hiding package standard will likely cause more harm
than good. See Example 8-e.

136 M 1
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Example 8-e:

Package A is
Type standard is ...

. x : standard;
Function "+" (al:Integer; a2:integer) return integer;
Procedure abc (al:integer);

end A;

3 Package body A is
Function "+" (al:integer; a2:integer) return integer is ...end "+";

'.. .- ". Procedure abc (al:integer) is
y: integer;

begin --abc

I y:= standard."+"(al,50); I --code added to reuse package A; reference
--------------------------- --is illegal since standard refers to type

--not predefined package and "+" overloaded.

end abc;
end A;

In Example 8-e, assume a call to package standard's predefined binary adding
operator for integers (i.e., "+") must be added to procedure body abc in order
to reuse it. This function cannot be used, however, since it is effectively
hidden. Hiding occurs because (1) the function "+" in package A hides package

S- standard's operator "+" on integers so there is no direct visibility to the
standard operator and (2) the type "standard" in package A hides the
identifier "standard" referring to the predefined package and so there is no
indirect visibility to the standard operator either. A reference to
standard."+" is illegal.

11-8.3 GUIDELINE/CHARACTERISTIC CROSS REFERENCE

Figure 118-I provides a cross reference between the reusability guidelines
presented in this chapter and the characteristics in Chapter 1-2.
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Reusability Characteristic
---- -- ----- --- -- --- -- --- -- -- --- --- ---- --- --- - -- - --- ---- --- ---

1 2 3 4 5 6 T 8 9 10 11 12 13 14 15 H
Guideline

G8-1 X x
G8-2 x

Figure 118-1: Guideline/Characteristic Cross Ref'erence
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Tasks

11-9 TASKS -*

11-9.1 ADA SUMMARY

Tasks are a form of program unit in Ada. Like subprograms, they have 7,

declarations and bodies. Unlike subprograms, they (1) can be executed in
parallel with other tasks and/or subprograms and (2) cannot be a compilation
unit by themselves, but must be nested within a subprogram or package. Tasks

. may have entries which can be called from other tasks. Accept statements
specify actions to be performed when an entry call is accepted. Calling and
called tasks are synchronized by a rendezvous. Entries may have parameters

. which allow communication of values between calling and called tasks. Ada
provides a set of statements for affecting task interaction. In addition to
entry call and accept statements, these statements include delay, select, and

. abort statements. Task types and task objects can be defined. Priorities may
be assigned to affect task execution (assuming the pragma PRIORITY is
supported by the Ada implementation in use). Finally, shared variables may be

- declared (assuming the pragma SHARED is supported by the Ada implementation in
use).

11-9.2 GUIDELINES

- This chapter's guidelines for writing Ada tasks support the reuse
.- metacharacteristics described in Section I and most of the characteristics

they imply. Tasks can be considered as procedure subprograms that can execute
in parallel with other tasks. Therefore, most of the reusability guidelines
for subprograms contained in Chapter 11-6 apply to tasks as well.

Corresponding guidelines are enumerated below. Explanations of them are
minimal and include a reference to Chapter 11-6.

11-9.2.1 Tasks in General

G9-1: Separate task declarations and bodies for ease of recompilation
and modification.

*- (Supports: 12, use with minimal modification; 7, separation of specification
from body).

See Guideline G6-1.

G9-2: Use task declarations to specify interfaces to reusable objects.
Use task bodies to implement these interfaces and properties of
the objects.
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(Supports: 8, low coupling; 13, insulation from the environment; 12, minimal
modifications for reuse; 1, interface clarity; 4, object-oriented). --

See guideline G6-3. For tasks, interfaces are concerned not only with
parameter passing but also with synchronization. Later in this chapter we
will discuss statements affecting this synchronization and their effect on
reusability. Also, while subprograms can optionally have a separate declara-
tion and body, tasks must have both declarations and bodies. Thus reusability
characteristics #8, #13 and #12 are satisfied somewhat automatically. Charac-
teristic #1 can best be achieved by specifying names and parameters for
entries in a clear, well-documented manner. Characteristic 4 is satisfied by
treating tasks as interfaces to reusable objects.

G9-3: Write task interfaces at an appropriate abstract level.

(Supports: 2, appropriate interface level).

See guideline G6-4.

11-9.2.2 Task Declarations

G9-4: First-level package-nested task declarations should have a stan-
dard format including regions for purpose, entry descriptions,
representation clause descriptions, and associated documentation. "

(Supports: 14, standard format; recommended information and organization
supports: 11, documentation for findability; 9, readability; 1, interface
clarity).

Figure 119-I shows an example format for a task specification. A first-level
task specification should contain at least this information, arranged in any
reasonable way. While it is important that all information in the template be
available, it is not crucial that this information be stored within source
code. It is important, however, that the format in which information is kept
be the same for every first-level task unit in a particular library. In this ,
guidebook, we include all information in the template.

1M-
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Task (type] <task simple name> [is

• ..

-- Purpose: Clauses:
ee -- Explanation:

'- -- Keywords:
-Entries:

, -- Representation Clauses:

-Associated Documentation:

.. end [<tasksimple name>]];

--Note: Square brackets indicate optional syntax.7"r
Figure 119-1: Task Declaration Template

q Figure 119-I shows four fields, each with one or more subfields. See the
discussion for guideline G6-5 for a description of the Purpose and Associated

- Documentation fields. Unlike subprograms, no Revision History field appears
- in the template becuase tasks cannot be library/compilation units.

o The Entries field contains task entry declarations along with an explana- -"

tion of their purpose, description of their parameters, and conditions for
them to be called.

o Ideally, the Representation Clauses field should be empty to promote the
highest level of machine independence and thus reusability. However, if
this is not possible, it should contain address clauses linking entries to
hardware interrupts with a complete commented explanation of conditions
necessary for each interrupt to occur.

11-9.2.3 Task Bodies "

G9-5: Secondary unit (subunit) and first-level package body nested task
bodies should have a standard format including regions for revi-

• -, sion history, purpose, associated documentation,

assumptions/resources required, side effects, diagnostics, pack-
ages, data declarations, operations and algorithmic code.

(Supports: 14, standard format; recommended information and organization

supports 11, documentation for findability, 9, readability; 1, interface
clarity; 6, scaffolding).
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*By secondary unit we mean a task body subunit that corresponds to a task body
stub that appears in a secondary unit package body. These subunits are at the
"library level," are candidates for reuse, and must be documented accordingly.

* Figure 119-2 shows an example format for a secondary unit or first-level
*package-nested task body. Such a body should contain at least this informa-
*tion, arranged in any reasonable way.(1) While it is important that all

information in the template be available, it is not crucial that this
information be stored within source code. It is important, however, that the
format in which information is kept be the same for every secondary unit or -P
first-level task body in a particular library. In this guidebook, we include
all information in the template.

Figure 119-2 shows ten fields, each with one or more subfields. See the
discussion for guideline G6-6 for a general description of the template .-

fields. Additions or clarifications about the Revision History,.
Assumptions/Resources Required, and Algorithmic Code fields are necessary for
task bodies, however.

(1) In extreme cases, this may require use of multiple fields and/or subfields*
with the same name. If this is necessary, we recommend using numbered -

indices to indicate successive fields/subfields (e.g., Subprograms (1),-
Subprograms (2), etc.).
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Task body <task simple name> is

-- Revision History:
-- Purpose:
-- Explanation:

I, -- Keywords:
-- Associated Documentation:

I -- Assumptions/Resources Required:
I" -- Side Effects:
I -- Diagnostics:
'- -- Packages:
,"-- Data Declarations:

-- Types:
-- Objects:
-- Operations:
-- Subprograms:
-- Tasks:

, -.-- Algorithm:

I "begin

I "[exception

I end [<task simplename>];

--------- ---

Figure 119-2: Task Body Template

o The Revision History field only applies to task body subunits since task
body program units cannot be library units themselves. No Revision History
field is necessary for task bodies contained directly within secondary unit
package bodies.

o The Assumptions/Resources Required field must contain information about the
use of shared variables.

o The Algorithm field must contain accept statements corresponding to all
entries specified in the corresponding task specification. This is
required by the Ada language. Commented information further clarifying
entry (and entry parameter) semantics that may serve to distinguish one
task body from another should be provided. The Algorithm field should also
contain handlers for exceptions associated with tasking such as
TASKING ERROR if other tasks are called from the current task. These
exception handlers support reusability characteristic #6 on scaffolding.

G9-6: Write task bodies to effectively handle interaction with/effects
on their environment; use SHARED variables.
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(Supports: 3, minimal interference with the environment).

The discussion for the corresponding guideline, G6-7, assumes the absence of P
tasking in the executing environment for reusable software. However, consider
a situation in which one or more environmental parameters are referenced
and/or changed by multiple concurrently executing tasks. This significantly
complicates matters. Ada does provide some assistance in the form of shared
variables (assuming the particular implementation of Ada in use supports the
pragma SHARED). If the pragma SHARED is not Implemented, updating of
environmental parameters should be strictly forbidden. Otherwise, the pragma
SHARED should be use%.. on appropriate object declarations and be fully
documented, as in Example 9-a.
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Example 9-a:

Package A is
X : Integer :=20;
pragma SHARED (X);

-X will be updated by tasks (including B,C) that modify the
-- state of the object abstraction ipeetdb akg eg
-- data strucutre X). ipeetdb eg

Task B is
entry El;

end B;

Task C is

entry E2;

end C;
end A;

Package Body A is
Task Body B is
begin
accept El do
X X + 1; -- update visible state variable

end El;
end B;

Task Body C is
begin
accept E2 do
X : X + 5; -update visible state variable

end E2;
end C;

4.. end A;

Another facet of interaction with the environment is interaction with other
tasks. This involves the rendezvous synchronization mechanism and entry
call/accept statement pairs. Accept statements should contain the minimum
amount of code necessary for execution during task synchronization. This is

-: important since the calling task is suspended while this code executes.
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G9-7: Write task bodies with one normal exit or termination point and a
grouped set of abnormal exits via exception handlers. 4

(Supports: 14, standardization; 9, readability; 12, modifiability).

In Ada, tasks can be activated with no "normal" exit or termination condition. .
However, we do not recommend this since it implies some environmental action
to terminate the task and dependent program units. A normal exit in tasks can
either be a TERMINATE alternative in a select statement or simply the end of a..
task's algorithmic code. We recommend only one normal exit. This exit should
be documented. We prescribe exception handlers with at least an OTHERS
alternative at the end of all task bodies to handle abnormal exists (other

• .than task abortion from elsewhere through use of an abort statement; We will
discuss abort statements later in this chapter). See Guideline G6-8. Tasks
that make entry calls on other tasks should include a TASKING ERROR alterna- .
tive in their exception handlers to handle cases where the called task has '.

completed or has become abnormal before the time of call.

G9-8: Write task body accept statements to pass results back to callers

of the task rather than using results to effect task function.

(Supports: 5, minimize side effects). -:

This guideline corresponds directly to guideline G6-9. See G6-9 for further
explanation.

11-9.2.4 Task Types and Task Objects

* G9-9: Use task types to define reusable operations on data and task
objects to implement particular (distinct) instances of these
operations.

(Supports: 4, object-oriented software).

Consider Example 9-b.

" Example 9-b:

.- (i) (ii).-

Package A is Package A is
Type B is ...; Type B is....;
Task C is Task type C is
entry D (X:B); entry D (X:B);
end C; end C;

end A; end A;
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In Example 9-b (i), one task abject named C is declared as an operation on
* data of type B. Even though package A and task C within it may be referenced

by multiple units of software in an Ada program, all references will be to one
task. This is different from the case when A.C is a reentrant subprogram and
each client software unit gets the equivalent of a "local copy" of A.C for its
own (sequential) use. In Example 9-b (ii), we illustrate the use of task
types. In Example 9-b (ii), each client software unit referencing package A
and task type C will in effect get one "local copy" of a task for each task
object of type A.C it defines. The difference between this and the case where
A.C is a subprogram is that multiple "local copies" of operations of type A.C
can bedefined within client software units and activated to execute in
parallel rather than sequentially from "within" these units.

* - ~ In general, multiple tasks operating in parallel on one data structure is
-quite different from one task operating on the data structure. Writers of

reusable tasks need to specify the intended use for task types and objects of
these types carefully. Users of tasks need to carefully follow developers'
wishes, or at least understand these tasks enough to recognize the effects of
modifications necessary for reuse.

11-9.2-5 Entries, Entry Calls, and Accept Statements

G9-10: Exploit entry formal parameter modes to clarify task interface
semantics.

(Supports: 1, interface clarity).

Since entry formal parts are identical to subprogram formal parts, see the

explanation of guideline G6-10. :-

G9-11: Use default entry parameters to generalize the context of a
reusable task; write complete task/entry specifications.

(Supports: 10, balance between generality and specificity).

This guideline directly corresponds to guideline G6-11. See guideline G6-11
* for further explanation.

* G9-12: Group all default parameters in entry parameter specifications

at the end of the specifications.

(Supports: 14, standardization; 3, minimal interference with the environment;
12, ease of modification).

This guideline directly corresponds to guideline G6-12. See guideline G6-12
for further explanation.
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G9-13: Use named parameter associations for calls to task entries with
greater than three parameters or in any Case for interface

Thi gudelnedirectly corresponds to guideline G6-13- See guideline G6-13

(Suports 9,readability; 13, insulation from the environment).

Thi gudelne iretlycorresponds to guideline G6-14. See guideline G-14

11-.2. DeayStatements, Duration, & Time

Because the simple expression in delay statements Must be of the predefined
type DURATION from package standard, we do not recommend writing software that
hides package standard. If a numeric literal is Used as a delay expression,
the hiding of the package standard type DURATION is no problem. However, for
the sake of reusability, modification of the expression to use objects of type
DURATION would be impossible if standard.DURATION were hidden.

* ~Guideline G8-4 deals with hiding package standard or identifiers, etc. *.

contained within it.

11-9.2.7 Select Statements

*G9-15: Write all select statements with an else part or include a
handler for the PROGRAMERROR exception at the end of the
enclosing task block.

(Supports: 6, scaffolding).

* The Ada LRM (D0D83] states,

"The exception PROGRAM ERROR is raised if all (select] alternatives are Fi
closed and there is no else part (in a select statement]."

*Considering the "changing environment" for reusable software, it behooves task
developers to build in scaffolding to handle the unexpected case where all
accept alternatives of an accept statement are closed. Including an else part
in select statements, as in Example 9-c (i), will ensure that the
PROGRAM ERROR exception is not raised. Alternatively, an exception handler
can be provided to handle this unexpected situation as in Example 9-c(ii). * .
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Example 9-c:(i) ii) ,..

Task Body A is Task Body A is
select select

" when B :> when B :>

C accept El; accept El;
or or
when C => when C =>
accept E2; accept E2;

else end select;
-- report unexpected exception
-- situation when PROGRAM-ERROR =>

end select; -- report unexpected situation
end A; end A;

11-9.2.8 Priorities

Gg-16: Minimize use of task priorities or modify priorities accordingly

when composing tasks with other tasks for the sake of reuse.

(Supports: 3, minimal interference with the environment).
. . 1. .: p.I

Assume pragma PRIORITY is provided by the Ada implementation in use and it is
used to specify the priority of a task relative to other tasks in an "original *.0
application." Now suppose this task is reused with other tasks each with

. their own priorities specified with the pragma PRIORITY. The relative
priority of the original task is possibly no longer valid. In a system that
automatically composes source code, we recommend priorities not be used
(unless inspection and respecification of priorities is automated). For
manual composition of source code, priorities for tasks may be used but work
will be required to make sure these priorities remain meaningful in the new
environment for the tasks concerned. Any use of priorities should be well
documented.

" 11-9.2.9 Abort Statements

G9-17: Minimize use of abort statements.

(Supports: 3, minimal interference with the environment).

Use of abort statements on a task causes the named task to be become abnormal, A

which prevents further rendezvous with it. Furthermore, any task in the
environment that depends on the named task also becomes abnormal unless its
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execution has already completed. Exception handlers that may be contained in
the bodies of aborted tasks will not be executed so that "planned" error
handling/scaffolding code will be bypassed. The Ada LRM (DOD831 states I .

"An abort statement should be used only in extremely severe situations- -'
requiring unconditional termination."

Because of the adverse and extreme environmental impacts of abort statements
and our hope that use of the reusability guidelines contained in this 791
guidebook will facilitate writing of source code without "severe situations,"
we do not recommend use of abort statements.

11-9.3 GUIDELINE/CHARACTERISTIC CROSS REFERENCE

Figure 119-3 provides a cross reference between the reusability guidelines
presented in this chapter and the characteristics in Chapter 1-2.

Reusability Characteristic

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Guideline

G9-I X X
G9-2 X X X X X
G9-3 X
G9-4 X X X X
G9-5 X X X X X
G9-6 X
G9-7 X X X-
G9-8 X
G9-9 X
G9-10 X
G9-11 X
G9-12 X X X
G9-13 X X
G9-14 X X
G9-15 X

• G9-16 X
G9-17 X

Figure 119-3: Guideline/Characteristic Cross Reference
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II-10 PROGRAM STRUCTURE AND COMPILATION ISSUES

11-10.1 ADA SUMMARY

An Ada program is a set of one or more compilation units compiled together or
separately in an appropriate order. Compilation units are subprogram declara-
tions or bodies, package declarations or bodies, generic declarations or

* . bodies, generic instantiations, or subunits which are the body of a F ,
subprogram, package, task or generic unit declared in another compilation
unit. Previously compiled units can be referenced in subsequent compilations
of units using a "with" context clause. "Use" context clauses can be used in

* conjunction with "with" clauses to achieve direct visibility of names declared
within compilation units. Enforcement of language rules requires the exis-
tence of a program library which contains appropriate information about ;
compilation units. Elaboration of all library units needed by a main program
is done before execution in an order consistent with library unit dependencies
and other rules, but can be effected by use of a pragma.

.- .• .

11-10.2 GUIDELINES

The guidelines for constructing reusable programs or compilation units mainly
support the findability and fit-to-be-reused metacharacteristics.
Fit-to-be-reused considerations center on being able to easily group software
modules together and modify them if necessary. While the guidelines in this
chapter have some bearing on the understandability of reuse candidates,
guidelines addressing understandability explicitly can be found in Chapters of
Section II that deal with specific compilation units or language constructs.

The guidelines in this Chapter state how reusable components or parts should
be structured in Ada. G10-1 expresses a standard form for "catalogued"
reusable components. G10-2 and G10-3 refine G10-1 specifying exactly what
portions of component internals are reusable. G1O-4 through G10-7 explain how
to write reusable components for maximum readability and modifiability, and
minimal negative environmental impact. The most important point made in this
chapter is that we have chosen packages as our "unit of reusability."

11-10.2.1 Compilation Units - Library Units

There are, in general, two kinds of reusable software parts - directly
reusable parts and indirectly reusable parts. Directly reusable parts are
those whose behavior or effect Is catalogued, that is, "advertised" in the
catalog(1) of reusable software that developers use to determine what software
parts are available for reuse. Directly reusable parts are what developers

(1) A catalog can be an automated software repository's classification scheme,
a list of component names and descriptions on paper, or even a rumor the
developer hears from a colleague down the hall.
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search for and choose. Indirectly reusable parts support directly reusable
parts; they provide the environment, the ancillary definitions and data that
the directly reusable parts need in order to perform correctly. In the ideal - U
case, indirectly reusable parts are incorporated into the program under
construction automatically by a software base management system.

11-10.2.1.1 Directly Reusable Parts

Reusable components should be objects. As abstractions, objects have
properties (data) and allowable operations on this data. The Ada package
should be the realization or concrete implementation of the object abstrac-
tion. It should contain basic declarations as defined in Ada (e.g., type and
data object declarations and subprogram/task specifications). Types and data
objects/variables implement data; subprograms/tasks implement operations.
Packages bundle these things up nicely.

G10-1: Use library unit package specifications as the encapsulation
mechanism for directly reusable software (i.e., data and opera-
tions on the data).

(Supports: 4, object oriented software; 14, standardization).

As described in Chapter 11-7, Ada package specifications have public and
private declarative parts. Chapter 11-7 also recommends a template for 1-
package specifications. The basic declarations of an abstract object's
visible structural properties should be grouped together at the beginning of
the public declarative part in a clearly-marked "Data Declarations" region
(see Figure II10-I). This region is one of several fields in the Chapter II-7
package specification template.
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I With <unit simple name>; --reference to library unit
I Package <package simple name> is

I --Data Declarations: includes types/objects,...

'~- I --Operations: includes procedure, function, task specifications

I private

I end;

,Figure 1110-1: Package Specifications Implement Directly Reusable
~: :*:~Software Parts

Basic declarations can include (1) type, (2) object, (3) exception, (4)
U number, (5) subtype, (6) deferred constant, and (7) renaming declarations, or
r (8) package specifications containing the above declarations and other basic

declarations not previously mentioned. Following the Data Declarations
region, an "Operations" region containing procedure, function, and task
specifications should be written. This corresponds to another field in the
Chapter 11-7 template for package specifications. It is the package specifi-acation that contains the interface to reusable objects. Context for opera-
tions declared in a package specification is important. Context is not only

* data in the Data Declarations region but also data and operations referenced
in Ada context clause library units and package Standard. Package specifica-
tions containing specifications of operations on data are directly reusable
software parts. See Figure 1110-2.
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With A; --library unit A is indirectly reused
Package B is

. --public part of package specification for B is directly I _
--reusable

private

. --private part is indirectly reusable

"°end B;

Package body B is

I" Procedure C (X:D) is separate;

I --package body B is indirectly reusable

end B; "

I Separate (B)
Procedure C (X:D) is

.- . --subunit for C is indirectly reusable "

K. I end C; -

p , Figure 1110-2: An Example Of Directly and Indirectly Reusablei-
Software Parts

G10-1 states that directly reusable software parts are package specifications
containing specifications of operations on data. Examples 10-a and 10-b

, present a case where data and operations on data are not so easily packaged
together.

" Example 10-a:

With E; With A;
Package A is Package E is
Type C is... Type F is...
Procedure B (X:C; Y:E.F); Procedure G(X:F; Y:A.C);

end A; end E;
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* The packages in Example 10-a, taken together, are illegal in Ada because they
are mutually dependent. At first glance, a solution would be to define a new3 package that combines all the operations and data. This is recommended.

* However, if this is not desirable for other reasons such as modularity or
-" understandability, a package consisting of the data from packages A and E

could be declared and referenced from both packages A and E, as in Example
-10-b.

Example 10-b:
Package Common Data is

Type C is ...
Type F is ...

end Common Data;

with Common Data;
Package A is
--Types C,F are defined in package Common Data.

procedure B (X: CommonData.C, Y: Common Data.F)...;
end A;

With Common Data;
Package E is
--Types F,C are defined in package Common-Data.

- procedure G (X: CommonData.F, Y: CommonData.C) ...;
end E;

The important point here is that library unit packages are our "unit of
reusability" with package specifications as the standard unit for directly
reusable software parts. It is the specifications of operations on data as
well as data contained in these packages that are directly reusable. In
Example 10-b, packages A and E are directly reusable. Procedures B and G
within packages A and E operating on their appropriate data are directly
reusable. Package Common Data supports these directly reusable components and
the packages that contain them but is not itself directly reusable. It is
indirectly reusable. Packages A and E encapsulate implementations of opera-
tions associated with an abstract object or part of the object. The
temptation is to write procedure specifications B and G as separately
compilable library units and not within a package specification. However, we
recommend writing them as in Example 10-b. Another case where use of separate . . .

or library unit subprograms might be postulated is for operations on
predefined data (e.g., integers). However, again we recommend these opera-
tions be packaged up with comments describing the data used.
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G10-2: Only "first level" nested non-package entities in library unit
package specifications form the basis for "catalogued" directly
reusable objects/software.

(Supports: 2, appropriate level of interface). . i- i

Ada packages can be nested to any level allowed by a compiler implementation,
and nesting can be used as desired for implementing reusable components.
However, for ease of "cataloging" there should be a practical limit to the
level of nesting of packages that encapsulate reusable software. G10-2 simply
states that only first-level data and specifications for operations on data
form the basis for reusable software and are "catalogued." Data and opera-
tions within nested packages are not catalogued as reusable even though they
are accessible to client programs according to the Ada language definition.
Nesting can easily complicate the environment or context for reusable

* software. For example, nesting provides an environment for declaration order,
information hiding, and visibility rules which is hard to reuse and to
understand, and in which operations and data are hard to classify.
Classifying only entities that are visible at the first level as reusable
operations on data in context will avoid this complication.

* Example 10-c:
Package A is
Package C is
Type D is...,
Procedure Sort D (X:D; Y: out D)...; 1.,

End C;
Type B is...
Procedure Sort B (X:B; Y:C.D; Z:out B)...;

End A;

-------- ---- ----

To illustrate this, in Example 10-c Procedure Sort B is catalogued as a

reusable operation on data of type B (which is also catalogued) in the context
* of package A; Package C is not declared as a service to the outside world as

Sort B is. Thus, neither package C nor its contents are catalogued. Nested
*. packages and their contents should not be visible to the outside world for the -

purposes of reusability even though they are in Ada.

Now, why would Package C be declared within Package A? One reason might be to
group logical entities within A that are a service to A. On the other hand,
if this package is to constitute an encapsulation of reusable software, useful
to more than package A, it should be broken out as a separate library unit and
be referenced in a context clause in package A. Note that although type D and

procedure Sort D are not catalogued, procedure Sort B uses type D from package
C. This is acceptable. The operation Sort B Is directly reusable while the
data it operates on may be indirectly reusable.
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11-10.2.1.2 Indirectly Reusable Parts

G10-3: Use secondary unit package bodies, package specifications
containing only data, and subunits corresponding to first-level
package body nested stubs as the encapsulation mechanism for
indirectly reusable software.

(Supports: 4, object-oriented software; 141, standardization). 2

This guideline, along with G10-1, states that all reusable Ada software should
be written In terms of packages. In particular, subprograms (with the
exception of main subprograms) and tasks should be written either directly
within the declarative parts of library unit packages or in that context
through the use of body stubs. In Ada, main programs must not be contained in I.

* packages. However, we do not treat them as reusable. It is the library unit
* packages they reference that are reusable. Secondary unit (library unit)

package bodies are indirectly reusable. Subprograms and tasks in the context
of library unit packages are indirectly reusable. Library unit package
specifications containing only data are indirectly reusable as well. See

*Figure 1110-2 to clarify the distinction between directly and indirectly
reusable software parts.

11-10.2.2 Context Clauses

G10-4: "With" clauses on package specifications should reference only
data needed in specifications. "With" clauses can be used
freely on package bodies as needed. ~\

(Supports: 13, insulation from the environment).

Clearly, an indirect reference to data needed in a package body by a with
clause on the body's corresponding specification is assuming this environment
for all possible bodies. For reuse, a natural occurrence is to replace bodies
and to require different environments for them. Different bodies for the same %
specification may need data from different library units. An attempt to

p.. change bodies using "with" clauses on the specification only may require a
context clause change on the specification or extra "with"ed library units in
an attempt to be general. See Example 10-d.

v*J.
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Example 10-d:

* With A; --information from A needed only in B's body JO
.'N' Package B is

end B;

Package Body B is

end B;

Assume in Example 1O-d that information from package A is needed in package
B's body and not in its specification. If, in order to reuse package B,
package B's body is replaced by a new body not requiring information from A,
then the reference to A in package B's specification should be removed.
Leaving the reference to A on package B's specification would be inefficient,
unnecessary, and confusing to readers, and thus is not recommended. This " '
would all be unnecessary if the reference to A was originally written in a
context clause on package body B.

11-10.2.3 Subunits of Compilation Units p.
G10-5: Use subunits to achieve modularity and ease of recompilation.

(Supports: 9, readability; 12, modifiability).

The ability to use subunits to implement the body of a program unit that is
declared within another compilation unit permits top down hierarchical devel- mv
opment and facilitates program modularity, readability and modifiability.
Modularity and readability are improved by allowing a body stub to take the
place of the proper body of a program unit, as in Example 10-e.
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Example 10-e:

~S Package A is
procedure B;

end A; separate (A) --subunit
procedure B is

Package Body A is

end B;
- K procedure B is separate;

end A;

*If the body of procedure B is long, and if package body A contains a number of
relatively long procedure bodies, the body of package A will become very large

* and hard to understand and change. When the body of procedure B is written as
* .~ (1) a body stub within package body A and (2) a separate subunit, package body

A will be of reasonable length. Use of a body stub and subunit for procedure
B increases modifiability in that a change in B (except in its parameters)

* will necessitate recompilation of its subunit only. Package A's entire body
would need to be recompiled if procedure body B were written directly within
package body A and B is changed. Subunit B could easily be replaced with
another subunit if reuse of the specification for B and thus package A
required it.

*Subunits can be reused in only one place, the place of the corresponding body
*stub or placeholder previously compiled. A subunit has an environment of
-. -%visible identifiers, etc. available to it as if it was declared in place of

its corresponding stub. Therefore, as stated above, a subunit is an indirect-
ly reusable software part. This is not to belittle the importance of
subunits, however. If used as described above, subunits are extremely

i important to reusability. We see the need for both directly and Indirectly
reusable software parts. Part ofdeveloping reusable software is determining
when something should be structured as an indirectly reusable part, as the

*separate subunit is in this example. An important facet of reusable software
development is following the appropriate guidelines when creating indirectly
reusable parts.

i%

* 11-10.2.4 Order of Compilation

G10-6: Use separate compilation and separate specifications and bodies 1
to achieve modularity and ease of recompilation.
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(Supports: 7, separation of specification from body; 12, modifiability).

Because of Ada's visibility rules and dependencies among library units F
referenced in context clauses, Ada prescribes an order of compilation for a
multi-part program unit. For example, a change to a package specification ?.

necessitates its recompilation as well as the recompilation of all library
units that reference it in a context clause. Any way source code can be
written to minimize recompilations necessitated by changes to it will enhance
reusability. This includes not only use of subunits as mentioned above but
also use of separate compilation of specifications and bodies. Separate .

bodies can be changed and/or replaced and recompiled without affecting their
corresponding specifications.

11-10.2.5 The Program Library

We feel that creative use of Ada program libraries can provide significant
support for reusability. For example, use of multiple domains within a
library or multiple libraries can facilitate software reuse where multiple
application areas are concerned. The library system can serve as an aid to
cataloging and retrieving software parts for reuse. Examine the capabilities
of your Ada implementation to determine the extent to which it provides such
support.

11-10.2.6 Elaboration of Library Units

G10-7: Minimize use of Pragma Elaborate.

(Supports: 3, interference with the environment (minimization of side "-
effects); 13, insulation from the environment).

Library unit specifications and bodies needed by a main program are elaborated
along with elaboration of library units referenced by these library units and
so on before execution of the main program. Elaboration order depends on the
relationships or partial orderings established by "with" clauses and subunits.
The pragma Elaborate may be needed if this ordering is not sufficient to
ensure elaboration of each library unit body before elaboration of any other
compilation unit whose elaboration depends on prior elaboration of one of
these bodies. However, we recommend limiting the use of this pragma since it
complicates the elaboration order issue and may lead to there being no
consistent elaboration order when groups of modules are combined for reuse.

11-10.3 GUIDELINE/CHARACTERISTIC CROSS REFERENCE I

Figure 1110-3 provides a cross reference between the reusability guidelines
presented in this chapter and the characteristics in Chapter I-2.
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Reusability Characteristic

1 *2 3 4 5 6 7 8 9 10 11 12 13 14 15
-- -------------------------------------------------------------------------------
Guideline

,'"G 10-1 x x "'

G10-2 X 1
G1O-3 x x
G1O-4 x
G-0-5 X j.G10-6 xX

- "--G10-T7

Figure 1110-3: Guideline/Characteristic Cross Reference
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II-11 EXCEPTIONS

11-11.1 ADA SUMMARY

11-11.2 GUIDELINES '

11-11.2.1 EXCEPTION HANDLERS

11-11.2.2 RAISE STATEMENTS

* 11-11.2.3 EXCEPTION HANDLING

--during execution of statements, elaboration of declarations, task execution

:4
11-11.2.4I Surpressing Runtime Checks

11-11.3 Gudln/hrceisi rs eeec
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11-12 GENERIC UNITS

11-12.1 ADA SUMMARY

, . , Generic units are program units of two types: either generic subprograms or
, generic packages. These units serve as templates for nongeneric subprogram or

package program units. These templates commonly involve parameterization but
parameterization is optional. Non-generic instances of an Ada generic unit
are obtained by a process called instantiation. Generic declarations declare
generic units and consist of subprograms and/or package specifications which
have generic formal parts where generic formal parameters (i.e. types,
objects and subprograms) can be specified. An instance of a generic unit, a
declaration in its own right obtained through instantiation of the unit,
associates generic actual parameters with formal parameters contained in the
generic unit declaration. A set of matching rules applies to this association

- of parameters. Generic bodies are subprogram or package bodies that corre-
spond respectively to generic subprogram or package declarations. The syntax

- ~. of these bodies is no different than for nongeneric bodies. However, as for
generic declarations, the bodies act as templates for bodies obtained through

' "generic instantiation (of a corresponding specification).

. 11-12.2 GUIDELINES

i This chapter's guidelines for writing Ada generic units support all of the
reuse metacharacteristics described in Section I and most of the characteris-
tics they imply.

11-12.2.1 Generic Declarations

G12-1: Use generic program units (i.e., packages and subprograms) to

effectively parameterize reusable software parts.

(Supports: 10, generality through parameterization; 12, use with minimal
9! modification; 9, readability).

One main form of parameterization in Ada is use of subprogram parameters.
However, subprogram parameters are limited to objects and their values.

"' Generic formal parameters, in addition to objects/values, can be types and/or
subprograms as well.

[BOOCH83b] states:

"By no means ignore the use of generics. If you thought that
" ." packages were a powerful structure, Just wait till you grasp the

power of generics. Generics make possible the production of truly
reusable software components, and their proper design can mean that

Honeywell Computer Sciences Center 163 .,.K



Li

A Guidebook for Writing Reusable Source Code in Ada .

the Cost of the production of a given unit can be amortized over its
many applications, in addition to facilitating the reliability and
understandability of a system.

"There are two basic models I use when designing generic units, one .

rather 'classical' and the other not so classical. In the classic . :'
case, generic units may be designed to form templates whose
instantiations apply to a large class of objects. Traditional data
strucutures such as stacks, queues, lists, etc. are good candidates Vo.
for generic units, as are searching, sorting and some mathematical

A operations. For example:

generic
type ELEMENT is private;

package FIFO-QUEUE is
type KIND is private;
procedure INSERT (E : in ELEMENT; ON :in out KIND);
procedure REMOVE (E out ELEMENT; FROM :in out KIND);

end FIFO-QUEUE;

generic
type INDEX is(<) ~
type COMPONENT is private;
type ARY is array (INDEX) of COMPONENT;
with function "1<" (LEFT, RIGHT : in COMPONENT) return BOOLEAN;

procedure QUICKSORT (A :In out ARY);

generic
type ANGLE is digits <>;

*type RESULT is digits <>;
vpackage TRANSCENDENTAL -FUNCTIONS is

function COS (A : in ANGLE) return RESULT; ~ .

function TAN (A : in ANGLE) return RESULT;

end TRANSCENDENTAL FUNCT IONS;.

"Now, I'll admit that writing a correct body for a generic is not a
trivial exercise, but the judicious use of attributes makes the task-
Possible. When architecting the generic part of such a unit, I ask
myself the following question: how can I generalize this component
to operate across a class of types? The answer can give me a
guideline on extracting the generic nature of a data structure or an
algorithm."

*I will discuss Booch's second generics model in the context of guideline G12-2
below.

Generics are invaluable because of the parameterization capabilities they
provide the Ada developer and reuser. Treating the types of objects and
operations on them as parameters opens up another dimension to the possible

* applications of a particular piece of source code. Generics provide a *
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wel-dfiedway to modify source code in order to reuse It. No
recoupilation3 are necessary if all tailoring to source code can be done by
supplying generic actual parameters in a generic instantiation.

G12-2: Use generic program units to precisely specify module ..

interfaces/ imports and exports.

(Supports: 1, interface clarity; 2, appropriate abstract level; 8, low
coupling; 13, insulation from the environment).

[BOOCH83b] describes his second model for using generics in this way...

"The second model for using generics is less classical - let me lead
up to its description. If, in a library unit, I 'with' another
unit, then I have essentially imported all the visible facilities of
that withed unit. The important word to recognize here is all.
Package specifications have essentially an open scope, and once I
'with' a unit, there is no convenient way to limit the use of a
visible part. Furthermore, in order to understand the functionality
of a given unit, it is necessary to examine the Visible part of all
withed units. Neither of these situations is necessarily very
desirable.

"In such cases, we may apply generic units to more precisely specify
module interfaces, and hence provide control over both imports and

C.exports relative to a module. In formulating such a unit, the
essential question to ask is NOT what general classes of types may
be applied to this module, but rather, what facilities does this

-*module need in order to fulfill its purpose. As an example,
consider building a system for plotting simple graphs. At the
lowest level, we may abstract a point on a graph as follows:

m generic
type ELEMENT is digits <c>;

package POINT is
type KIND is private;
procedure SET (K :out KIND;

X : in ELEMENT;
4.Y : In ELEMENT);

function X (K : in KIND) return ELEMENT;
function Y (K : in KIND) return ELEMENT;

private

az end POINT;

"This is an example of a generic of the first kind. In this case,
4 all a given point needs to 'know' is its accuracy. We may build

upon this abstraction by defining the specification of the graph
generator:
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generic

type XVALUES is digits <>;
type Y-VALUES is digits <>;
type COORDINATE is private;
with function X(C : in COORDINATE) return XVALUES;
with function Y(C : in COORDINATE) return Y VALUES;

package GRAPH is
procedure SET-UP;
procedure SET TITLE (TO : in STRING);
procedure ADD (C : in COORDINATE); ':

procedure GENERATE;
end GRAPH;

"This is an example of a generic of the second kind. Instances of
the package GRAPH need only have knowledge of the range of values
over the domain and range, and some characteristics of points.
Notice in this example, that in order to understand the
functionality of GRAPH, we need not know the details of any external
entity (although a little documentation certainly wouldn't hurt).
Still, the unit is generalized, since it may be instantiated across
multiple kinds of points. We have thus effectively defined an
import list for the unit. Furthermore, we may now use these units
in layers of abstractions, wherein the layers are relatively inde-
pendent. For example:

type VALUE is digits 10;
package VALUE POINT is new POINT (ELEMENT => VALUE);
package VALUE-GRAPH is new GRAPH (X VALUES :> VALUE,

Y VALUES :> VALUE, '-

COORDINATE :> VALUE POINT.KIND,
X => VALUE POINT.X,
Y => VALUE-POINT.Y);

"One caveat must be mentioned: depending upon the subject compiler,
this use of generics to form layers of abstractions may result in a
space penalty. Of course, this penalty must be weighed against
increased control of interface specification."

The key to Booch's second model for using generics is in the clarity and
control that layered generic abstractions provide. Referring to his example,
the point abstraction is separated from the graph abstraction and the "kind
of" facilities each needs from the environment (i.e., generic parameters
and/or types and subprograms). Facilities provided to the environment are
clearly specified. The emphasis here, however, is on facilities required from
the environment. This separation of object abstractions provides a level of
simplicity to the user and the fact that they are layered corresponds directly
to users' intuition.

It is interesting that although conceptually package graph depends on package
point, this dependency does not manifest itself directly in a context (i.e., a
with) clause relationship. Thus, packages point and graph can be relatively
independent. The dependency between the two packages is a dependency between
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instantiations as Booch illustrates with packages valuepoint and value graph.
In the instantiations of packages point and graph, generic actual parameters
provide an explicit indication as to information needed from the environment
and Just how the two packages are related (i.e., package valuegraph needs

• type valueyoint.kind and functions valuepoint.x and valuepoint.y). The ".

fact that package graph did not need to "with" package point and only the
needed subset of capabilities of package point were used by the instantiation
of package graph (i.e., procedure valuepoint.set was unused), Booch was able
to control or limit use of the visible part of package point.

Thus, interfaces are clear, package graph is insulated from the environment
" - (e.g., package point), and coupling between packages graph and point is

minimized. Also, as for subprogram parameters, all generic parameters should
be written at an appropriate abstract level for the function of the generic. .

G12-3: Use generics to allow specification of multiple instances of
reusable software as compared to reuse of one shared instance.

(Supports: 15, right abstraction for the application).

In the non-generic world, one can declare a package with an instance of an
-.encapsulated object (i.e., a variable) to be reused. By encapsulated, we mean

this variable is declared in a package body with subprogram (or task)
interfaces specified in the corresponding package specification. (See Chapter
11-7). We have good reasons for doing this, one of which is to provide
standard interfaces to reusable object instances. Every reference to such an
object Is indirect. The package being reused is one package that contains one
set of subprograms (and tasks) operating on an instance of one object. If
only one such instance is needed, use of generics is not required. If more
are needed, use of generics is required. If we want these multiple object
instances to be different, different generic parameters are required for each
instance. However, even in the case where multiple, identical reusable object
instances are required, generics provide programmers with an effective tool as
well. See Example 12-a.
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Example 12-a: , -

generic
type Element is private;
package Stack is
procedure Add (X : in Element);
procedure Remove (X : out Element);

private

end Stack;

package body Stack is
type Stack-Type is...;
My-Stack : Stack Type;
procedure Add ...; ..
procedure Remove ...;

begin P"q .

end Stack;

package GamesPeoplePlay is
procedure DuellingStacks;

end GamesPeoplePlay;

with Stack;
package body GamesPeople Play is

procedure DuellingStacks is
package Stacki is new Stack (INTEGER);
package Stack2 is new Stack (FLOAT);

begin -- two instances of stack
-- package are required

-- since two encapsulated
end Duelling Stacks: -- stack object instances

-- are required.
end GamesPeoplePlay;

In Example 12-a, first a generic stack package is declared. Next, the package
Games People Play is written containing procedure Duelling Stacks.
Duelling Stacks needs two instances of stacks. A variable declaration for a
stack is encapsulated in the body of package Stack with an indirect interface
in its corresponding specification. By making package Stack generic, multi-
ple, different instances of stacks can be provided by generic instantiations,
as in the body of package Games People Play which is in the body of procedure
DuellingStacks. In the case where two identical encapsulated stacks were
required, two instantiations of package Stack with identical "element" parame-

a -*168 March 1986

........ _...'-..-... ,



Generic Units

ters could have been used. Without generics, two (nonparameterizable)
instances of the same stack package would need to be declared (one with a

Udifferent name) to achieve this effect.
G12-4: Use basetypes rather than subtypes to specify the type of a

generic formal object or generic formal subprogram parameter or
result types.

(Supports: 9, readability).

This guideline comes directly out of the Ada Reference Manual [DOD83].
[DOD83] states:

"The constraints that apply to a generic formal object of mode in
out are those of the corresponding generic actual parameter (not I.
those implied by the type mark that appears in the generic parameter

- . declaration). Whenever possible (to avoid confusion) it is
recommended that the name of a base type be used for the declaration

• 'of such a formal object. If, however, the base type is anonymous,
it is recommended that the subtype name defined by the type
declaration for the base type be used."

(DOD83] then goes on to say:

"The constraints that apply to a parameter of a formal subprogram -

are those of the corresponding parameter in the specification of the
.• matching actual subprogram (not those implied by the corresponding

type mark in the specification of the formal subprogram). A similar
remark applies to the result of a function. Whenever possible (to
avoid confusion), it is recommended that the name of a base type be
used rather than the name of a subtype in any declaration of a
formal subprogram. If, however, the base type is anonymous, it is
recommended that the subtype name defined by the type declaration be
used."

G12-5: Library unit and first-level package nested generic unit decla-
-.,* rations should have a standard format, including a region fora

description of generic parameters as well as standard informa-
-* tion required for non-generic subprogram and package declara-

tions.

* (Supports: 14, standard format; recommended information and organization
supports 11, documentation for findability, 9, readability).

Figures 1112-I and 1112-2 show example templates for library unit and
first-level generic declarations. These declarations should contain at least
this information, arranged in any reasonable way.(1) While it is important

(1) In extreme cases, this may require use of multiple fields and/or subfields k
with the same name. If this is necessary, we recommend using numbered
indices to indicate successive fields/subfields (e.g., Subprograms (1),
Subprograms (2), etc.).
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that all information in the templates be available, it is not crucial that
this information be stored within source code. It is important, however, that e_
the format in which information is kept be the same for every library or
first-level generic unit in a particular library. In this guidebook, we
include all information in the template.

I generic -

I-. -I

I procedure or function <subprgramname> -
I<parameter_list> (return] <typemark>;

-- Revision History: .
* ,. -- Purpose: -

-- Explanation:
-- Keywords:

" I -- Generic Parameter Description: I
S-- Parameter Description:

A---Associated Documentation:

- - - - -- - --------

Figure 1112-I: Generic Subprogram Declaration Template

-- * --
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I I i generic

I Package <package name> is

-- Revision History:
I -... Purpose:

-- Explanation:
-- Keywords:

S..-- Generic Parameter Description:
-- Associated Documentation:

--Diagnostics:
I""-- Packages:
S" -- Data Declarations:

-- Types:
-. -- Objects:
I--Operations:

-- Subprograms:
I.-- Tasks:
. -- Private:.. S..-

End <package name>;

- -----------------------------------

* Figure 1112-2: Generic Package Declaration Template

The Generic Parameter Description field contains a brief explanation of each
generic formal parameter and clarifications of parameter semantics that apply
to all possible generic bodies corresponding to the declaration. Semantics
peculiar to the bodies should be described in documentation for the bodies
themselves. This clarification of semantics is more difficult for generic
parameters than for, say, non-generic subprogram parameters in view of the
additional kinds of parameters (i.e., types and subprograms) allowed.

Bodies corresponding to generic units are identical to bodies of non-generic
units. See Chapters 11-6 and 11-7 for details. See guidelines G6-5 and G7-
for descriptions of other template fields.

G12-6: Separate generic declarations from bodies for ease of
recompilation and modification.

(Supports: 12, use with minimal modfication; 7, separation of specification
from body).

j ~ See the discussion for guideline G6-1 in Chapter 11-6 and guideline G7-1 in
Chapter 11-7 for furthcr information.
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V 11-12.2.1.1 Generic Formal Objects

G12-7: Exploit generic formal object parameter modes to clarify
interface semantics. .''

(Supports: 1, interface clarity).

Generic formal object parameters can have modes of in or in out. As for
subprogram parameters, (see guideline G6-10), specification of parameter modes
that constrain use of parameters to their intended function make interface
semantics clear and avoid confusion/unexpected results.

11-12.2.1.2 Generic Formal Types

G12-8: Use generic type definitions to clarify interface semantics and
module operation.

(Supports: 1, interface clarity).

A difference between generic formal parameters and subprogram formal parame-
ters is that with generics, types as parameters must be considered. Generic

*type definitions specify types from one of six general classes: discrete,
integer, floating point, fixed point, array and access types. Along with
these types come implicit operations on objects of these types. Use generic
type definitions appropriate to the functionality of corresponding generic

* packages and procedures.

G12-9: Use "additional" generic parameters as necessary to effect
inheritance of desired operators on generic formal types.

(Supports: 4, object-oriented software).

*The Ada Language Reference Manual (D0D83] states:

"For an instantiation of the generic unit, each of' these operations
(i.e., operations associated with type classes in generic type
definitions] is the corresponding basic operation or predefined
operator of the matching actual type. For an operator, this rule
applies even if the operator has been redefined for the actual type
or for some parent type of the actual type."

Thus, in defining a generic package or subprogram with a generic formal type
as parameter, one must realize that none of the redefined operators for the
type that may have been provided with the type will be inherited for use in an ~.~
instantiated generic. This would tend to break down our object-oriented *

approach to reusable software parts since types and operations on data of
these types would (somewhat unnoticeably) become separated. The solution to ~
this problem is to define generic subprograms as generic formal parameters in
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addition to generic formal type parameter(s) and require any redefined
subprogram operators of concern to be explicitly "passed" to generic
instantiations. See Example 12-b.

Z; %1~

Example 12-b:

Package A is
type X is .. range 1...10;
function "+" (Y, Z in X) return X; -- redefines predefined

-- integer adding
-- operator;

end A;

generic
type B is range <>;

i with function "+" (E, F: in B) return B;I -- must be provided to
------------------------------------------ inherit any redefined adding

-- operations on objects
-- of type B

procedure C is
D :B;

begin
D : = D + 1; 1-"+" expected to be appropriate adding operator

-- for objects of generic formal type B;
end C;

with A;
Package Body G is

Procedure H is '.

procedure MYC is new C(A.X, A."+"); --appropriate adding operator on
- --objects of type X provided to

--instantiation of C;
begin --H

end H;
end G;

11-12.2.1.3 Generic Formal Subprograms

Honeywell Computer Sciences Center 173 -4

'._ , ft-



A Guidebook for Writing Reusable Source Code in Ada

G12-10: Minimize generic formal subprogram parameter overloading and
overloading of subprograms in generic packages. L

(Supports: 9, readability; 13, insulation from the environment).
* - 1*

This guideline corresponds to guideline G6-14 in Chapter 11-6, dealing with Z
overloading of subprograms. In addition to readability and understandability .l
aspects associated with subprogram overloading discussed in Chapter 11-6, the
discussion of binding of overloaded subprograms to their definitions is
particularly relevant here. This binding depends on the context in which4.
overloaded subprogram names are used. Overload resolution depends not only on
subprogram names but on their parameters and result types (for functions) as
well. In addition to context changes that may affect subprogram name binding
that are not caught by an Ada compiler or user that are applicable when
generics are not used, we refer to [D0D831 for another warning:

* "If two overloaded subprograms declared in a generic package speci-
fication differ only by the (formal) type of their parameters and
results, then there exist legal instantiations for which all calls
of these subprograms from outside the instance are ambiguous. For-
example:

generic
type A is(>)
type B is private;

package G is
function NEXT(X : A) return A;
function NEXT(X : B) return B;

end;

package P is new G(A => BOOLEAN, B => BOOLEAN);

-calls of P.NEXT are ambiguous"

named NEXT is generic package G with parameters for types A and B, and any
* other software visible (now or in its extended environment for reuse) to G.

The fact thiat the types A and B are generic parameters to package G and that
both NEXT functions depend on these parameters makes for a potentially J
ambiguous situation. This is illustrated in the example. This unnecessarily
complicates reuse of G and could have been avoided by declaring NEXT functions
with different names. Package G puts an unnecessary constraint on its
environment by requiring the functions next to operate on different parameter
types or return results of differing types in order for no ambiguity to exist.
What if a user wants types A and B to be the same? This would require a
change to one of the package G NEXT functions.

* Incidentally, generic formal subprograms as parameters can be overloadedi but
for the same reasons as stated above, this should be minimized.

G12-11: Minimize use of the box (is <>) notation to specify default
generic formal subprograms as parameters.
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(Supors: 3,insulation fro the environment).

[DOD83jJ specifies the following use of the "box" notation:
* ,.*"If a generic unit has a default subprogram specified by a box, the
N. corresponding actual parameter can be omitted if a subprogram,

enumeration literal, or entry matching the formal subprogram, and
with the same designator as the formal subprogram, is directly
visible at the place of the generic instantiation; this subprogram,
enumeration literal, or entry is then used by default (there must be
exactly one subprogram, enumeration literal or entry satisfying the
previous conditions)."

This is potentially dangerous for reusability because it assumes in the
default case direct visibility of a subprogram, enumeration literal, or entry.
Unless this default is declared in the same program unit as the generic unit,
(and in this case we recommend using named defaults), do not depend on the
direct visibility of anything when it comes to the volatile environment of a
reusable software module. The context of a reusable software module is
expected to change from use to use. Use of the box notation puts an explicit
and unnecessary requirement on this context.

11-12.2.2 Generic Bodies

G12-12: Use basic operations/attributes associated with generic formal
types to provide required generality to generic bodies.

(Supports: 10, balance between generality and specificity).

Predefined language basic operations/attributes provide an effective mechanism
to generalize generic bodies. This is because in may instances they apply to

* classes of types, not just particular types. A good example of this is the
use of discrete types. (See Example 12-c.) If a generic formal type is
specified as a parameter and the generic type definition involved calls for a
discrete type, the body of the corresponding generic subprogram or package has
at its disposal basic operations of assignment, membership tests, qualifica-
tion, and a series of attributes (base, first, last, width, pos, val, succ,
pred, image, value, size and address). These operations/attributes can be
used independently of the particular discrete type provided as a parameter in
instantiations of a generic subprogram or package. A similar case applies for
other classes of generic formal types.

.,% *

N.%
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Example 12-c:

generic
type A is (<>); .

procedure X;

end X;

procedure X is --body of generic procedure X

begin

For I in A'FIRST..A'LAST loop -"

-- attributes FIRST and LAST are used
-- to generalize generic body

4°

end loop;
end X;

11-12.2.3 Generic Instantiations

G12-13: Used named parameter association in actual parameter parts of

generic instantiations.

(Supports: 1, interface clarity; 9, readability).

This guideline directly corresponds to guideline G6-13 in Chapter 11-6 on
subprograms. The difference between that guideline and this one is that we
recommend named notation always be used with generic parameters and in Chapter
11-6, we suggested that it be used with three or more subprogram parameters.
In general, it is more difficult to look at a generic instantiation and
manually associate actual and formal parameters than for subprogram parameters ..

because generic parameters can be types and subprograms in addition to objects
and values. [DOD83] states that named associations are not allowed for use in -

instantiations with overloaded subprogram designators. However, we have
already advised against overloading in guideline G12-10. '..

G12-14: Use default parameters for generic actual parameters whenever
possible.

(Supports: 10, balance between generality and specificity; 9, readability).
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'. This guideline corresponds to guideline G6-11 in Chapter 11-6 on subprogram
default parameters. Generics allow default values for objects and subprogram
parameters. The defaults for objects are much the same as for subprogram
parameters. (See Chapter 11-6). However, subprograms as generic parameters
themselves can simplify reuse and give the user an example of a viable

: subprogram to use as a parameter. This makes reusable generic source code %
more readable/understandable.

L G12-15: Create particular instantiations of generic units

corresponding to common uses of reusable software.-,

(Supports: 15, domain of applicability).

Instantiations of generic units that are "right" for a particular application
domain will be more easily used than the original generic units
(uninstantiated). We feel that in many cases, as libraries of reusable code
are built up for particular application areas, sets of instantiated generics
will likely emerge as reusable parts in addition to the original generic
units.

11-12.3 GUIDELINE/CHARACTERISTIC CROSS REFERENCE

Figure 1112-3 provides a cross reference between the reusability guidelines

presented in this chapter and the characteristics in Chapter 1-2.

Reusability Characteristic

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P Guideline

. G12-1 X X X
G12-2 X X X X
G12-3 X
G12-4 X
G12-5 X X X
G12-6 X X
G12-7 X
G12-8 X
G12-9 X
G12-10 X X
G12-11 X
G12-12 X
G12-13 X X
G12-14 X X
G12-15 X
-- -------------------------------------------------------------------------------

Figure 1112-3: Guideline/Characteristic Cross Reference
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1-132 REPRESENTATION CLAUSES AND IMPLEMENTATION DEPENDENT FEATURES
-I1

1-13.1 ADA SUMMARY

1-13.2 GUICELINES

1-13.2.1 REPRESENTATION CLAUSES

*1-13.2.1.1 LENGTH, ENUMERATION, RECORD, AND ADDRESS CLAUSES

1-13.2.1.2 CHANGE OF REPRESENTATION

* 1-13.2.2 IMPLEMENTATION DEPENDENT FEATURESp.

* 1-13.2.2.1 THE PACKAGE SYSTEM

* 1-13.2.2.2 MACHINE CODE INSERTIONS

1-13.2.2-3 INTERFACE TO OTHER LANGUAGES L.-~

* I1-13.2.2.4I UNCHECKED PROGRAMMING

* 1-13.3 GUIDELINE/CHARACTERISTIC CROSS REFERENCE r*
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11-14 INPUT-OUTPUT

11-14.1 ADA SUMMARY

- 11-14.2 GUIDELINES

11-14.2.1 EXTERNAL FILES AND FILE OBJECTS

f - 11-14.2.2 SEQUENTIAL AND DIRECT FILES

- 11-14.2.3 TEXT INPUT-OUTPUT

11-14.2.4 EXCEPTIONS IN INPUT-OUTPUT

11-14.2-5 LOW-LEVEL INPUT-OUTPUT

-11-14.3 GUIDELINE/CHARACTERISTIC CROSS REFERENCE
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A APPENDIX: LIST OF GUIDELINES

This appendix contains a complete list of guidelines specified in this *

guidebook.

G6-1: Separate subprogram declarations and bodies for ease ofVI Z
recompilation and modification.

G6-2: All reusable subprograms except a main program must be written
within a library unit package.

G6-3: Use subprogram declarations to specify interfaces to reusable
objects. Use subprogram bodies to implement these interfaces
and properties of the objects.

G6-4: Write subprogram interfaces at an appropriate abstract level.

G6-5: First-level package-nested subprogram declarations should have
a standard format including regions for purpose, parameter
descriptions and associated documentation.

G6-6: Secondary unit (subunit) and first-level package body nested
subprogram bodies should have a standard format, including
regions for revision history, purpose, associated documenta-
tion, parameter description, assumptions/resources requied,
side effects, diagnostics, data declarations, packages, opera- Z
tions, and algorithmic code.

G6-7: Write subprogram bodies to effectively handle interaction
with/ effects on their environment.

G6-8: Write subprogram bodies with one normal exit and a grouped set
of abnormal exits via exception handlers.

G6-9: Write subprogram bodies to pass results back to callers rather
than use results to effect their function.

*G6-10: Exploit formal parameter modes to clarify subprogram interface
semantics.

G6-11: Use default parameters to generalize the context of a reusable
subprogram; write complete subprogram specifications.

*G6-12: Group all default parameters in subprogram parameter specifi-
cations at the end of the specifications.

G6-13: Use named parameter associations for calls on subprograms with L
more than three parameters or in any case for interface
clarity.
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Appendix: List of Guidelines

G6-14: Minimize subprogram overloading.

G7-1: Write library unit package specifications and bodies in sepa-
rate files for ease of recompilation and modification.

1dm. G7-2: Use package specifications to specify the interface to object ...

abstractions; use package bodies to encapsulate
implementation-specific details of these abstractions not
needed by client software.

G7-3: Packages should implement interfaces to reusable objects at a
consistent abstract level.

G74L: Library unit package specifications should have a standard
format, including various regions for revision history, pur-
pose, associated documentation, diagnostics, packages, data
declarations, operations, and private types.

G7-5: Secondary unit package bodies should have a standard format
including regions for revision history, purpose, associated
documentation, assumptions/resources required, side effects,
diagnostics, packages, data declarations, operations and
initialization code.

G7-6: Use private or limited private types and the private part of
package specifications to restrict client software's view of
data and operations on that data.

G8-1: Do not use "use" context clauses.

*G8-2: Use renaming declarations to resolve name conflicts with the
* environment.

-XG8-3: Use renaming declarations to facilitate modifying reusable
software to represent new object abstractions.

meG8-4: Do not hide package standard.

*G9-1: Separate task declarations and bodies for ease of
recompilation and modification.

G9-2: Use task declarations to specify interfaces to reusable
objects. Use task bodies to implement these interfaces and .

* . properties of the objects.

G9-3: Write task interfaces at an appropriate abstract level.
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G9-4: First-level package-nested task declarations should have a
standard format including regions for purpose, entry descrip-
tions, representation clause descriptions, and associated doc- r.
umentation.

G9-5: Secondary unit (subunit) and first-level package body nested
* task bodies should have a standard format including regions "

for revision history, purpose, associated documentation,
assumptions/resources required, side effects, diagnostics,
packages, data declarations, operations and algorithmic code.

G9-6: Write task bodies to effectively handle interaction
with/effects on their environment; use SHARED variables.

G9-7: Write task bodies with one normal exit or termination point
and a grouped set of abnormal exits via exception handlers.

- G9-8: Write task body accept statements to pass results back to
callers of the task rather than using results to effect task
function. "

- G9-9: Use task types to define reusable operations on data and task
objects to implement particular (distinct) instances of these
operations.

G9-10: Exploit entry formal parameter modes to clarify task interface
semantics.

G9-11: Use default entry parameters to generalize the context of a
reusable task; write complete task/entry specifications.

G9-12: Group all default parameters in entry parameter specifications
at the end of the specifications.

G9-13: Use named parameter associations for calls to task entries
with greater than three parameters or in any case for
ir erface clarity.

G9-14: Minimize entry overloading.

G9-15: Write all select statements with an else part or include a
handler for the PROGRAMERROR exception at the end of the
enclosing task block.

G9-16: Minimize use of task priorities or modify priorities accord-
ingly when composing tasks with other tasks for the sake of
reuse.

- G9-17: Minimize use of abort statements.
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Appendix: List of Guidelines

G10-1: Use library unit package specifications as the encapsulation
mechanism for directly reusable software (i.e., data and
operations on the data).

G10-2: Only "first level" nested non-package entities in library unit
package specifications form the basis for "catalogued" direct-
ly reusable objects/software.

G10-3: Use secondary unit package bodies, package specifications
containing only data, and subunits corresponding to
first-level package body nested stubs as the encapsulation

* mechanism for indirectly reusable software.

G10-4I: "With" clauses on package specifications should reference only
data needed in specifications. "With" clauses can be used
freely on package bodies as needed.

G10-5: Use subunits to achieve modularity and ease of recompilation.

G10-6: Use separate compilation and separate specifications and
bodies to achieve modularity and ease of recompilation.

G10-7: Minimize use of Pragma Elaborate.

G12-1: Use generic program units (i.e., packages and subprograms) toI effectively parameterize reusable software parts.

G12-2: Use generic program units to precisely specify module
interfaces! imports and exports.

G12-3: Use generics to allow specification of multiple instances of
reusable software as compared to reuse of one shared instance.

G12L4: Use basetypes rather than subtypes to specify the type of a
'. generic formal object or generic formal subprogram parameter
* or result types.

G12-5: Library unit and first-level package nested generic unit dec-
larations should have a standard format, including a region
for description of generic parameters as w~ell as standard
information required for non-generic subprogram and package

* declarations.

G12-6: Separate generic declarations from bodies for ease ofr
recompilation and modification.

G12-7: Exploit generic formal object parameter modes to clarify
interface semantics.

G12-8: Use generic type definitions to clarify interface semantics
and module operation.
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G12-9: Use "additional" generic parameters as necessary to effect
inheritance of desired operators on generic formal types.

G12-10: Minimize generic formal subprogram parameter overloading and
overloading of subprograms in generic packages.

G12-11: Minimize use of the box (is <>) notation to specify default
generic formal subprograms as parameters.

G12-12: Use basic operations/attributes associated with generic formal
types to provide required generality to generic bodies.

G12-13: Used named parameter association in actual parameter parts of
generic instantiations.

G12-14I: Use default parameters for generic actual parameters whenever
possible.

G12-15: Create particular instantiations of generic units
corresponding to common uses of reusable software.
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4 -Appendix: Guidebook-Wide Characteristic/Guideline Cross Reference

B APPENDIX: GUIDEBOOK-WIDE CHARACTERISTIC/GUIDELINE CROSS REFERENCE

This appendix contains a cross reference between the reusability characteris-
tics presented in Chapter 1-2 and the guidelines presented in Section II.

1. Interface is both syntactically and semantically clear.

G6-3, G6-5, G6-6, G6-10, G6-13, G7-2, G7-4, G7-5, G9-2, G9-4, G9-5, G9-10,
. - G9-13, G12-2, G12-7, G12-8, G12-13.

.-. 2. Interface is written at appropriate (abstract) level.

G6-4, G7-3, G9-3, G10-2, G12-2.

3. Component does not interfere with the environment.

G6", G8-1, G8-4, G9-6, G9-12, G9-16, G9-17, G10-7.

4. Component is designed as object-oriented; that is, packaged as typed data
with procedures and functions which act on that data.

.- G6-2, G6-3, G7-2, G8-3, G9-2, G9-9, G10-1, G10-3, G12-9.

5. Actions based on function results are made at the next level up.

G6-9, G9-8.

6. Component incorporates scaffolding for use during "building phase."

G6-6, G7-4, G7-5, G9-5, G9-15.

7. Separate the information needed to use software, its specification, from

the details of Its implementation, its body.

G6-1, G7-1, G9-1, G10-6, G12-6.

",.-, 8. Component exhibits high cohesion/low coupling.

, G6-3, G7-2, G7-6, G9-2, G12-2.
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9. Component and interface are written to be readable by persons other than
the author.

G6-5, G6-6, G6-8, G6-13, G6-14, G7-4, G7-5, G8-2, G8-4, G9-4, G9-5, G9-7,
G9-13, G9-14, G10-5, G12-1, G12-4, G12-5, G12-10, G12-13, G12-14.

i 10. Component is written with the right balance between generality and
specificity.

G6-11, G9-11, G12-1, G12-12, G12-14.

11. Component is accompanied by sufficient documentation to make it findable.

G6-5, G6-6, G7-4, G7-5, G9=4, G9-5, G12-5.

12. Component can be used without change or with only minor modifications.

G6-1, G6-3, G6-8, G6-12, G7-1, G7-2, G8-1, G8-3, G9-1, G9-2, G9-7, G9-12,
G10-5, G10-6, G12-1, G12-6.

13. Insulate a component from host/target dependencies and assumptions about
its environment; Isolate a component from format and content of informa-
tion passed through it which it does not use.

G6-3, G6-14, G7-2, G7-6, G8-2, G9-2, G9-14, G10-4, G10-7, G12-2, G12-10,
G12-11.

14. Component is standardized in the areas of invoking, controlling,
terminating its function, error-handling, communication, and structure.

G6-5, G6-6, G6-8, G6-12, G7-4, G7-5, G9-4, G9-5, G9-7, G9-12, G10-1,
G10-3, G12-5.

15. Components should be written to exploit domain of applicability. Compo-
nents should constitute the right abstraction and modularity for the
application.

G12-3, G12-15.
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Appendix: Example Ada Modules

C APPENDIX: EXAMPLE ADA MODULES

C.1 DESCRIPTION OF EXAMPLE MODULES

The example Ada modules contained in this appendix are taken from the design
of a reusable software repository developed at the Honeywell Computer Sciences
Center. This repository supports retrieval, submission, and maintenance of
categories of inventory items stored in a database management system. Its
user interface is menu oriented. Figure C-i shows the major components of the
repository:

AdaRepository: a procedure that is the main routine;

Menu Manager a generic package specification and body defining repository
menu objects and operations on them; contains operations .-.
including task LOG REPOSITORY USE and procedure
CREATE INITIAL MENU;

Inventory Item : a package specification and body defining repository inven-
tory items and operations on them; .

" - Category : a package specification and body defining repository
" categories and operations on them;

User : a package specification and body defining repository user

objects and operations on them;

Database
Interface : a package specification and body containing the interface to

the underlying database management system (entities, attri-
butes, and relationships);

" '' User State • a package specification and body defining user state infor-
mation and associated operations;

Bulletin Board : a package specification and body defining a repository
bulletin board and associated operations;

Command
Processor : a package specification and body providing the ability to

access and execute host commands;

FileSystem . a package specification and body providing access to host
files;

( > System_
Supplied

. Utilities : a package specification and body providing system supplied
utilities, including STRING manipulation.
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Appendix: Example Ada Modules

The example Ada modules below make up a subset of the repository components.
These modules are: (1) procedure AdaRepository, (2) generic package
Menu Manager (specification), (3) generic package Menu Manager (body), (4)
procedure body Create Initial Menu (subunit), (5) task body Log Repository Use
(subunit), and (6) package InventoryItem (specification).

C.2 GUIDELINES ILLUSTRATED

We have attempted to illustrate as many reusability guidelines as possible
with the example Ada modules below. Most notably, the following guidelines

* .(grouped by reusability characteristic) are illustrated:

1. Interface is both syntactically and semantically clear.

g. G6-3, G6-5, G6-6, G6-10, G7-2, G7-4, G7-5, G9-2, G9-4, G9-5, G9-10,
G12-2, G12-8, G12-13. .-.'

4. Component is designed as object-oriented; that is, packaged as typed

data with procedures and functions which act on that data.

G6-2, G6-3, G7-2, G9-2, G9-9, G10-1, G10-3.

6. Component incorporates scoffolding for use during "building phase."

G6-6, G7-, G7-5, G9-5.

7. Separate the information needed to use software, its specification,

from the details of its implementation, its body.

G6-1, G7-1, G9-1, G10-6, G12-6.

9. Component and interface are written to be readable by persons other
than the author.

G6-5, G6-6, G6-8, G6-14, G7-4, G7-5, G-4, G9-4, G9-5, G9-7, G9-14,
G10-5, G12-1, G12-4, G12-5, G12-10, G12-13.

11. Component is accompanied by sufficient documentation to make it
findable.

* G6-5, G6-6, G7-4, G7-5, G9-4, G9-5, G12-5.

14. Component is standardized in the areas of invoking, controlling,

terminating its function, error-handling, communication, and structure.
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G6-5, G6-6, G6-8, G7-4, G7-5, G9-4, G9-5, G9-7, G10-1, G10-3, G12-5.

Note: Procedure AdaRepository is "officially" not reusable since it is the
main routine and is not enclosed in a library unit package. However, we have
written it using our template for reusable subprograms.

C.3 ADA MODULES

,4 , EXAMPLE: MODULE 1 "

with TEXT IO;
with MENU MANAGER, DATABASE INTERFACE;
procedure ADA-REPOSITORY is

-- Revision History: Created 2/23/86 R. St. Dennis
-- Purpose:
-- Explanation: Main routine for a repository of Ada inventory items.
-- This repository supports retrieval, submission, and
-- maintenance functions.
-- Keywords: None

-- Associated Documentation: Design for Honeywell Reusable Software Repository
-- Parameter Description: None
-- Assumptions/Resources Required: None "
-- Side Effects: None to
-- Diagnostics: None
-- Data Declarations:

Types:
type AR NUMBER is range 1.. 100;
type AR -MENU ITEM is range 1..55;
type AR MENU is array (AR MENU ITEM) of STRING;

-- Objects:
INITIAL MENU NUMBER : AR NUMBER; " -

INITIAL MENU ITEM : AR MENU ITEM;
CONTINUE : BOOLEAN;. "
LOG DESIGNATOR : STRING;

Packages:
package REPOSITORY MENU MANAGER is new MENU MANAGER (MENU :> AR MENU,

MENU NUMBER => AR NUMBER,
MENU-ITEM :> AR MENU ITEM);

" Operations:
*- -- Subprograms: None . .p.

-- Tasks: None
-- Algorithm:
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begin -- ADA REPOSITORY

DATABASE INTERFACE. INITIALIZE; E
REPOSITORY_MENU_ANAGER.CREATE INITIAL ENU( INITIAL MENU NUMBER);,:+ ~REPOSITORY _ ENU _ ANAGER.LOG _REPOSITORY _USE.OPEN _LOGTLOG _ ESIGNATOR) ;

2 ':+while CONTINUE loop
":REPOSITORY MENU HANAGER.DISPLAY MENU(INITIAL MENU NUMBER);

.+ ~ ~REPOSITORY-PEU-HANAGER.ACCEPTHENURESPONSETINITYALHENUNUMER,INTA EUIE) ..

REPOSITORY MENU MANAGER.PROCESS MENU RESPONSE (INITIAL MENU NUMBER,''-

INITIAL MENU ITEM,
CONTINUE);

end loop;

REPOSITORY MENU MANAGER.LOG REPOSITORY USE.CLOSE LOG(LOG DESIGNATOR);
DATABASE INTERFACE.FINALIZE;-.

exception

when REPOSITORY MENU MANAGER.MENU MANAGEMENT ERROR :>
REPOSITORY MENU MANAGER.LOG REPOSITORY USE.CLOSE LOG(LOGDESIGNATOR);
DATABASE INTERFACE.FINALIZE; V
TEXTIO.PUT("Repository execution terminated due to MENUMANAGEMENT

error");
when others=>U REPOS ITORY MENU MANAGER. LOG REPOSITORYUSE. CLOSELOG(LOGD.SIGNATOR);
DATABASE INTERFACE.FINALIZE;
-- Report termination of repository execution.

end ADAREPOSITORY;

* EXAMPLE: MODULE 2

with DATABASE INTERFACE;
generic

type MENU Is private;
type MENU NUMBER is range <>;
type MENU -ITEM is range <>;

* package MENU MANAGER is
-. .,

. -- Revision History: Created 2/20/86 R. St. Dennis
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--Purpose:
- PExplanation: Provide data structures for and operations on STRN--

-- ~repository menu objects. .

-Keywords: menu, menu-manager

-- Generic Parameter Description: k
-- MENU : Specific menu type desired; must be an array of STRINGs.
-- MENU NUMBER : Integer type for number of menus.
-- MENU-ITEM : Integer type for range of items within menus.

Associated Documentation: Design for Honeywell Reusable Software Repository

-- Diagnostics:
MENUMANAGEMENT ERROR : exception;

-- Packages: None

-- Data Declarations:
-- Types: None
-- Objects: None

-- Operations: .' ,'
Subprograms: - .

procedure CREATE INITIAL MENU (MNUMBER : out MENUNUMBER);

-- Purpose:
-- Explanation: Create initial repository menu.
-- Keywords: initialmenu, create initial menu

-- Parameter Description:
-- MNUMBER : Menu number associated with initial menu.

-- Associated Documentation: same as above
C..

procedure CREATE CATEGORY MENU (CATEGORY : in
DATABASE INTERFACE. RELATION NAME;
CATEGORY MENU : out MENU);

-- Purpose: -
-- Explanation: Create menu of categories from repository contents. -

Keywords: categorymenu, create category menu

Parameter Description:
CATEGORY : Parent category name.

-- CATEGORY MENU : Category menu created.S -- Associated Documentation : same as above

192 March 1986
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Appendix: Example Ada Modules

g procedure DISPLAY-MENU (M NUMBER : in MENU NUMBER);

Purpose:
Explanation: Displays specific menu.

-- Keywords: display menu

-- Parameter Description:
-- _NUMBER : Number of menu.

-- Associated Documentation : same as above

procedure ACCEPT MENU RESPONSE (M NUMBER : in MENU NUMBER;
MENU ITEM SELECTED : out MENU ITEM);

-- Purpose:
-- Explanation: Accept menu response.
-- Keywords: menuresponse, accept menu response

-- Parameter Description:
-- M NUMBER : Number of menu.
-- MENU ITEM SELECTED : Specific item from menu selected.

-- Associated Documentation: same as above

procedure PROCESS MENU RESPONSE (M NUMBER : in MENU NUMBER;
MENU ITEM SELECTED : in MENU ITEM;

- .: EXIT : out BOOLEAN);

-- Purpose:! -- Explanation: Process response specified by menu selection.
-- This processing may involve a call to DISPLAY MENU and

S-- ACCEPT MENU RESPONSE and a recursive call to PROCESS_
-- MENU RESPONSE.

K-- eywords: menu response, process menu response.

i -- Parameter Description:
M -- NUMBER : Number of menu.
E-- MNU ITEM SELECTED : Specific item from menu selected.

-- EXIT . Indication to exit menu system.

-- Associated Documentation: same as above

* ," -- Tasks:
task LOG REPOSITORY USE is

-- Purpose: ~*
L -- Explanation: Record usage of repository.

-- Keywords: log, logrepositoryuse.
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-- Entries:
entry OPEN LOG (LOGID : out STRING); -- Open repository log named

-- LOGID;

entry CLOSE LOG (LOG ID : in STRING); -- Close repository log named
-- LOGID;

-- Associated Documentation: same as above -

end LOGREPOSITORYUSE;

-- Private:

private

end MENU-MANAGER;

* * EXAMPLE: MODULE 3 *

with INVENTORY-ITEM, CATEGORY, USER, TEXT IO;
with USER STATE, BULLETINBOARD, COMMAND PROCESSOR, FILESYSTEM,

SYSTEM SUPPLIED UTILITIES;
package body MENU MANAGER is

-- Revision History: Created 02/21/86 R. St.Dennis
-- Purpose:
.-- Explanation: Provide data structures for and operations on
-- repository menu objects.
-- Keywords: menu, menu_manager

-- Associated Documentation: Design for Honeywell Reusable Software
Repository.

-- Assumptions/Resources Required: None
-- Side Effects: None
-- Diagnostics: None
-- Packages: None
-- Data Declarations:
.-- Types:

type MENU ACCESS is access MENU;
type MENU STACK ELEMENT is

record
MENU POINTER : MENUACCESS;
MENU FILESYS LOCATION : STRING (1..100);
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end record;
-- Objects:

MENU STACK : array (1..31) of MENUSTACKELEMENT; I-
MENU STACK INDEX : NATURAL := 0;

'-- Operations:
-- Subprograms: .1*

iI4procedure CREATE INITIAL MENU (M NUMBER : out MENU NUMBER)
is separate; 

procedure CREATE CATEGORYMENU (CATEGORY : in
DATABASE INTERFACE.RELATION NAME;
CATEGORY MENU : out MENU) is separate;

procedure DISPLAY MENU (M NUMBER : in MENU NUMBER) is separate;
procedure ACCEPT MENU RESPONSE (M NUMBER : in MENU NUMBER;

i MENU ITEMSELECTED : out MENU ITEM)
is separate;

* procedure PROCESS MENU RESPONSE (M NUMBER In MENU NUMBER;
MENUITEMSELECTED : in MENU ITEM;
EXIT . out BOOLEAN)
is separate;

;-- Tasks:
task body LOG REPOSITORY USE is separate;

'-' -- Initialization:

"- :" begin .'"
exception

when IVENTORY ITEM. INVENTORY ITEM ERROR :>

S.raise MENUMANAGEMENTERROR;

when others :> .

raise MENU MANAGEMENT ERROR;

" - end MENUMANAGER;

"-* EXAMPLE: MODULE 4 -

separate (MENU MANAGER)
procedure CREATE INITIAL MENU (M NUMBER : out MENU NUMBER) is

-- Revision History: Created 2/21/86 R. St. Dennis
"" Purpose:
-- Explanation: Creates initial repository menu by reading data for it from

," -- a host file and placing it on the MENU MANAGER menu stack.
-- Keywords: initial-menu, create-initialmenu
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-" -- Associated Documentation: Design for Honeywell Reusable Software Repository
"" -- Parameter Description:

-- H NUMBER : Number of menu created.

-- Assumptions/Resources Required: None , ,
Side Effects: None
Diagnostics: None

-" Packages: None
Data Declarations:

,* -- Types: None
"-- Objects:

FILE-DESIGNATOR : FILESYSTEM.FILENAME :: "DRAO:[SOURCE]FILE_NAME.TXT";

-- Operations: _
S-- Subprograms: None
-- Tasks: None
" "Algorithm:

* begin -- CREATE INITIALMENU

-- read from host file, create menu, and place on MENU-STACK;
-- increment MENU STACK INDEX by 1;

H NUMBER :: MENUSTACKINDEX + 1;

except ion L
when others =>

end CREATE INITIAL MENU; .

*' EXAMPLE: MODULE 5 "

separate (MENU MANAGER)
task body LOG REPOSITORY USE is

-- Revision History: Created 02/21/86 R. St. Dennis
-- Purpose:
-- Explanation: Record usage of repository.
-- Keywords: log, log repositoryuse

Associated Docmentation: Design for Honeywell Reusable Software
Repository

-- Assumptions/Resources Required: None
-- Side Effects: None
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-- Diagnostics: None
-- Packages: None
-- Data Declarations:
-- Types: None
-- Objects: None
-- Operations:
-- Subprograms: None
-- Tasks: None

-- Algorithm:

begin

accept OPEN LOG (LOG DESIGNATOR : out STRING) do

* .-'TEXT IO.GET(LOG DESIGNATOR);

end OPEN LOG;

accept CLOSE-LOG (LOG-DESIGNATOR : in STRING) do

end CLOSE LOG;
exception
when others :>

. end LOG REPOSITORY USE;

-" * EXAMPLE: MODULE 6 *

package INVENTORY-ITEM is

-- Revision History: Created 02/21/86 R. St. Dennis
-- Purpose:
-- Explanation: Provide data structures for and operations on
-- repository inventory item objects.
-- Keywords: inventory item

-. Associated Documentation: Design for Honeywell Reusable
Software Repository.

-- Diagnostics:
IVENTORY ITEM ERROR : exception;

-- Packages: None
-- Data Declarations:
-- Types:
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type INVENTORYITEMINDEX is new POSITIVE;
-- Objects: None
-- Operations:
-- Subprograms:

procedure DISPLAY ACTUAL INVENTORY ITEM (II NUMBER : in
INVENTORYITEMINDEX);

-- Purpose:
Explanation: Display actual inventory item on terminal

-- screen.
-- Keywords: display, display actual inventoryitem

-- Parameter Description:
-- IINUMBER : Number associated with inventory item in F
-- repository ' .

-- Associated Documentation : same as above

procedure COPY INVENTORY ITEM (II NUMBER : in
INVENTORYITEMINDEX);

-- Purpose:
-- Explanation: Copy inventory item to host file in current
-- working directory.
-- Keywords: copy, copyinventoryitem

-- Parameter Description:
-- II NUMBER : Number associated with inventory item in
-- -repository

Associated Documentation • same as above

procedure DISPLAY INVENTORY ITEM BASIC INFO (II NUMBER : in N
- -INVENTORY ITEM INDEX);

-- Purpose:
-- Explanation: Display basic information about inventory
-- Item including author, date submitted, number
-- of users, etc.
-- Keywords: display, displayinventory, item basic info

-- Parameter Description:
* "- II NUMBER : Number associated with inventory item in

-- repository

-- Associated Documentation : same as above q

.'. vs.I . .-
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procedure DISPLAY tNVENTORY ITEMDEFICIENCIES (II NUMBER : inJ INVENTORY ITEMINDEX)

-- Purpose:

-- Explanation: Display list of deficiencies associated withI
-- inventory item.

-- Keywords: display, display-deficiencies, deficiencies

~ -- Parameter Description:
-- IINUMBER : Number associated with inventory item in -

-- repository

-Associated Documentation :same as above

-Tasks:
-- Private:

private

end INVENTORY ITEM;

Uz

Hoewl CoptrSincsCne 9

.1L



U

Appendix: Glossary

D APPENDIX: GLOSSARY U

4' cohesion-

The type of association among the component elements of a module.

Functional cohesion is that type in which every element within a
module contributes directly to performing one single function.

client oftwar

(In this guidebook) software that references reusable Ada software. i:
* coupling-

A measure of the strength of interconnection (the communication
bandwidth) between modules. High coupling results from low cohe-
sion. -

directly reusable software parts-

Software parts whose behavior or effect is cataloged, that is,
"advertised" in a catalog of reusable software that developers use
to determine what software parts are available for reuse. A catalog
can be an automated software repository's classification scheme, a .

list of component names and descriptions on paper, or even a rumor ~ .

* the developer hears from a colleague down the hall. Directly
reusable software parts are what developers search for and choose.

indirectly reusable software parts-

Software parts that support directly reusable parts. Indirectly
reusable software parts provide the environment, the ancillary 1
definitions and data that directly reusable parts need in order to
perform correctly. In the ideal case, indirectly reusable parts are
incorporated into programs under construction automatically by a
software base management system.

users-

(In this guidebook), humans who reuse Ada source code.
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6.4I FUTURE WORK

i In the upcoming year we plan to complete the remaining sections of the
Reusability Guidebook and refine/add to the Ada examples it provides.
Guidelines from the Guidebook will be used to construct reusable software
components for RaPIER's software base management system. We also plan to
circulate the Guidebook for review. Feedback we receive from RaPIER
prototyping experiments and the Guidebook review will enable us to evaluate
the characteristics and guidelines and refine them accordingly.

In later years, we hope to develop measures for the Reusability Guidebook
characteristics and implement/experiment with software base classification
schemes tailored to Guidebook characteristics and guidelines.

.. ., a,-a

a.. .. 4-

., ' . -

bi.

a.2
a.

o.
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Fragment Generation Study

SECTION 7

FRAGMENT GENERATION STUDY

* This section describes initial work on Fragment Generation which was accom-
plished solely with Honeywell internal funds. The task was to study current
fragment generation methods, determine their applicability to RaPIER, and

" recommend a plan for absorbing applicable technology into the RaPIER environ-
ment. If found applicable, the study should recommend a program plan.

7.1 PROBLEM STATEMENT

The RaPIER (Rapid Prototyping to Identify End-user Requirements) project will
deliver methodologies and automated support for constructing prototypes rapid-
ly and cheaply. The prototypes can be constructed through a combination of
the following:

o Reuse of software components. The components are program modules that are
catalogued and managed by a Software Base. Software Base components are,
in general, small units of code that can be composed into larger components
using a Very High Level Language (VHLL).

I !o Reuse of larger fragments. Large pieces of code such as text-editors or
database managers should be reused with little or no alteration.

o Fragment generation. Code that does not exist must be either written in a
conventional programming language (assembler or high-level language) or
generated from a high-level specification by program transformation.

So far, progress has been made in the reuse of software components and larger
fragments. A Software Base is being built and we have reused such large
fragments as the EMACS text-editor, the MULTICS Compose text-processor and
various data managers without significantly altering their code. The third

h. option, fragment generation is being investigated. Specifically, we prefer

the economically attractive method of generating program fragments by
transforming high-level specifications into executable code.

Honeywell Computer Sciences Center 207

' '.Lo:,' ' *. . *.. , , ' '.-* * . .. .'- .'.'.-. ..'..*. * - .. .. ... . . . . . .. - - .. . .' ....... . .. - . .-, .-- .* ..*' .



.* ._ -- - -., -,\ . - v" o y3 -- . - - . .' .- . . : ' '." -* -; - . . ."

Final Scientific Report: RaPIER Project (Contract No. N00014-85-C-0666)

7.2 OUTCOME
We conducted a literature survey of current program transformation methods.

Given the state-of-the-technology and given the resources available to RaPIER

for the duration of the project, we made the recommendations in subsection
7.4. This document is neither a tutorial nor a survey but an evaluation as to V...,

whether the RaPIER project can use today's program transformation technologies
or add value to make them useful in our environment.

7.3 PROGRAM TRANSFORMATION SYSTEMS

By program transformations, we mean the systematic transformation of a formal

specification into executable code through the application of
correctness-preserving rules known as transformation rules. A typical example
is the generation of a language parser: a formal specification (usually a BNF
grammar) is fed into the parser generator which in turn generates executable
code for parsing the language. A detailed survey of transformation systems
can be found in [PATCH83]. In this section, we will discuss three systems
which represent the state-of-the-technology.

A. The DRACO-System .

The DRACO System [NEIGHBORS8O] provides a programming environment in which
the design and analysis of programs are reused. DRACO provides mechanisms
for defining domain-specific specification languages, appropriate mappings
from those languages into any of a number of executable high-level
languages or other previously defined specification languages, and
optimizing rules. The transformation from the domain language into the
target language Is semi-automatic in the sense that the user can make
individual implementation choices (called refinements in DRACO) or even
insert new tactics into the system when "guiding" the transformation.

EXAMPLE

The following example is taken from [NEIGHBORS8O]. The problem is to
generate transactions against a given relational database from natural

h language queries. The domains involved here are the domain of augmented -
transition networks (ATM) and the domain of relational database management -
systems. A similar problem in which natural language parsers were
generated given a dictionary and an ATM was the motivation for this
particular problem's solution. In the previous problem, the dictionary
specified the legal words, their parts of speech, and special word
features, while the ATN is a finite state machine implementation of rules
for combining words into correct sentences. The input to the ATN is a
dictionary and a sentence; the output is a set of syntax trees.

For the new example, the dictionary specifies the domain in which the
database operates - the schema along with words for constructing
sentences. The database objects are nouns in the dictionary, verbs imply
a relation, and so forth, as shown in Figure 7-1.
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NOUN =noun may imply a restriction
NPR = idctsnominative pronoun
NUMN number of the noun

*TYPE = indicates a restriction -

* ROOT =gives the type restriction

Fred I NOUN I NPR NUM : Singular
Ethel I NOUN NPR NUN :Singular

* VERB =verb implies a relation
*NUN =number of the verb
* REL = verb relation name
* SDON =subject domain in relation
*ODOM4 = object domain in relation

IS IVERB INUM- Singluar SI)OMN OBJ ODOM: Type REL: IS
ldARE IVERB K UM: Plural SDOM: QBJ ODOM: Type REL: IS

I' DETERMINERS '

/* ADJECTIVES *

I* COMMANDS
find I Ct4D I
what ICMD I

/* QUANTIFIERS C

Figure 7-1 DictionaryBlock
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The ATN for this problem was modified to build nested transactions instead
of syntax trees.

There are other examples in which the user is involved in the refinement
process. For this class of transformations, DRACO reuses designs and "
specifications already stored in the system. By interrogating the user, '.
DRACO is helped to choose among various implementation alternatives and

", then refines the chosen alternative into executable code.
-r

B. The TAMPR System

The TAMPR (Transformation Assisted Multiple Program Realization) System
[BOYLE79] is one of the oldest program generation systems. It has been in -

use at the Applied Mathematics Division of the Argonne National Laboratory - I
to assist the development, adaptation, and maintenance of mathematical
software packages written in FORTRAN. As in the DRACO System, an abstract
program is transformed into executable code. The emphasis in TAMPR is one
implementations that are also optimized for the hardware/software environ-.-. "
ments or for the problem domain.

EXAMPLE

This example is taken from [BOYLE79]. It illustrates the transformation
of high-level specification into code through the replacement of patterns
by program text; code optimization is also done along with the replacement ,
(called macro-expansion in TAMPR). Below are transformations for -J I.--
implementing the push and pop subroutines.
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<tint>

[ .SD
call push (<expr> "1")

push: block;

sp = sp + 1;

if (sp .GT. maxsp) then;
call error;*" end; n

stack (3p) <expr) 1 ";
push : end

&. .SC.
0 6

.SD.
call pop (<var> "1")

pop : block;
if (sp .LE. 0) then;

call error;
end;
<var> "1" = stack (sp);
sp = sp - 1;

pop : end;
* .SC1 } :"S

i The transformation process is straighforward except that there is no
optimization. The optimization process is carried out by introducing
extra constructs into the transformation rules. For a specification such
as:

%".' .
-. : ;

call pop (symbol);
<stMt>

<strut>
call push (identifier);

The unoptimized result is:

Ho.o,
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pop : block;
if (sp .LE. 0) then;

call error;
end
symbol = stack (sp);
sp =sp - 1;

push : block;

sp = 3p + 1; 7-
if (sp .GT. maxsp) then;

:4 call error;

end
stack (sp) identifier; '

push : end;

, Let us consider one possible optimization. If push follows a 222, and if
no other ush or 222 operations are in between them, then the test
(sp > maxsp) can be removed from the push operation because the space for
the element to be pushed is certainly available following the pop. One
way to detect that there is no push or 222 operation In between a M and
push sequence is to bundle all non-stack operations into one block so that r.
stack operations are conspicous. The example specification can then be
written as:

.- pop : begin ; <stmt tail>;
no stack operations ; begin <stUt tail>;
push : begin ; <stmt tail>; "

<stat tail>

Such clauses as ".where. (condition)" can also be Used to guide certain
optimizations. The "where" clause is similar to an "if" statement in
programming languages; in this case, the transformation system evaluates
the condition and acts accordingly. 00,

C. The GIST System

GIST is the name of a high-level specification language developed at the h M
University of Southern California [FEATHER831. GIST specifications are .

transformed into code by a process in which the GIST system interacts with
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.

the user. The system is semi-automatic. GIST specifications attempt to
formalize natural language descriptions in ways that retain most of the
power of natural language. The capabilities of GIST include:

* A relational model of data for associative retrieval of data objects.

e Schemas for describing object relationships.

* Ability to make historical references to past states of objects.

. Constraints which can be declared globally.

e Demons which can be triggered.

* Closed system specification, i.e., once interfaces and global behavior
are defined, the behavior of portions of the same become defined '"
implicitly.

EXAMPLE

The following example is taken from [FEATHER83].

A package router (see Figure 7-2 and Figure 2 on page 50 of [FEATHER83])
can be characterized as a network with a source, pipes that connect this "
source to switches or that connect switches to other switches. The whole
connection of switches and pipes is a binary tree. At the end (leaves)
are bins which are the destination of packages.

U 4-SOURCE
PACKAGE

AT A SOURCE

SWITCH -----

PACKAGE
" "'. AT A SWITCH

File No. 6-0349

Figure 7-2 Package Router Example
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GIST capabilities come in handy here. The network, packages, switches,
pipes and bins are all objects whose descriptions and relationships are
modelled by database relations. The states Of these objects (for exampleW
the arrival of a package) can be modelled by insertions, deletions and
modification of the relations. The relational approach also allows
descriptive references such as: "the bin that is the destination of this
package". A given specification can be reused by simply inserting new
objects and modifying the schema. Historical references can be made by

interrogating the past states of the database; for example "Has this
package been at that switch?" Constraints and demons can be modelled in I

The mapping of GIST constructs into programs is accomplished by converting
the relational schema into appropriate data structures (for example
arrays, hash tables), generating the appropriate inference rules on the
data structures, generating exception handlers for the demon constructs,
and so forth. The details of these mappings will not be discussed here.
GIST designers insist that the mappings are semi-automatic and there is no
immediate plan for full automation.

*7.4 DISCUSSION

The designers of the transformation systems discussed in this section agree
that productivity gains and correct maintenance of software can be achieved by
reusing and modifying high-level specifications rather than code. Each of the
systems has been successful in some way. DRACO can store high-level specifi- I
cations, reuse them, and transform them into code. The problems solved so far
have been small, well-defined, and performance was not an issue. The TAMPR
system has been successful for optimizing sequential programs written in
FORTRAN. GIST system transforms database-like specifications into data struc-
tures and code.

Other transformation systems discussed in the literature have also been
* successful in limited ways. The greatest success has been in areas where
* mathematically sound ideas have been made practical. Parser generators and

syntax-directed editor generators have been implemented using attributed
grammars. Systems that transform code written in one programming language
into another programming language have also been successfully implemented.

* For well-known, specialized application domains, it is possible to build (over
time) a System to transform a specification written in a special-purpose

*specification language into executable code. When the application domain
becomes more general or where experience concerning the domain is lacking,
there has been no record of successful implementations Of transformation
systems. Any recorded success, as in DRACO, has been on very small problems.

* The RaPIER project has the option of pursuing research in the area of fragment
generation or waiting for the technology to mature. The first choice means
that we improve upon what is available now and adapt it to our work.
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In order to adapt anything to our work, we would want to examine our
motivation for prototyping in the first place. We are building prototypes

3 that will be used by software developers that build software for embedded
computer systems. For such systems, synchronization and timing are important.
We note that there has been no claim of successful implementation of a
transformation system that generates programs with concurrent processes or

S-timing constraints. Even if there were, there is no guarantee that such a
system will be adapted quickly and easily enough to mesh into RaPIER's
construction methodology. r

The TAMPR system is the result of years of experience in building mathematical
software in FORTRAN. First, code was stored, maintained and reused. The
difficulties of this approach led to the improvements that brought TAMPR
about. The RaPIER project is starting out in a more advanced fashion; there
is a very high-level language for composing reusable components, programs so
constructed can (at least in part) be modified by modifying the VHLL. There
has been no experience, however, in the use of this VHLL or the Software Base.
There is consequently no documentation for the kinds of problems we run into
in the use of the Software Base.

This section suggests that RaPIER recognize that leverage comes with
-. generating code from high-level specifications rather than reusing code. But

in order to manage the scope of the present project, it is advisable to build
a system in which reusable code can be successfully used for prototyping
embedded computer systems software. The next step is to make sure, by domain
analysis, that the Software Base does indeed contain the right software for
embedded computer systems. When the right set of software becomes available,
we can then experiment with abstractions of these in order to define an
appropriate VHLL for ECSs and the transformation of that VHLL's constructs
into code.

E 7.5 FUTURE WORK

It is clear that RaPIER must invest in specification languages. PSDL, the
Behavior Abstraction classification scheme, and the need for fragment genera-
tion all demand that kind of investment. Work on specification languages
should start in parallel with the the current RaPIER project; an initial
exploratory research should then set the stage for future thrust in this Li
important new area. Since this exploratory research has not yet been
conducted, we do not have a program plan for the research. Beacause RaPIER
should eventually have the capability of generating code from specifications,
we will

o track the most mature program transformation systems such as GIST F

o bring one of the systems "in-house" for investigation

o adapt that system to the RaPIER environment if the investigation shows that
the system has promise for our work.
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gp

SECTION 8

DEMONSTRATION/RESEARCH EXAMPLES

8.1 PROBLEM STATEMENT

RaPIER's goals are to develop a prototype engineering environment and to
ensure transfer of this engineering environment from sheltered research
surroundings to the production mileau (see subsection 1.2).

Meeting these goals is challenging in two respects:

o requirements of engineering environments for building prototypes are not
well understood (which is implied by the fact that none have been built),

S-and
o technology transfer is often unsuccessful (IEEE83-

Our approach to achieving these goals Is to use examples from actual Honeywell
projects to guide RaPIER methodology and tool development and to use the
results of working on these examples to influence further RaPIER development
(see subsection 1.3). The examples we choose serve to:

1. direct and constrain our research and development so that we tackle
problems whose solutions meet the real needs of Honeywell divisions and

* the DoD contractor community in general;

2. test our solutions to those problems, thus assuring that the solutions do
work;

3. facilitate technology transfer by involving the natural recipients of this

technology in its development, especially in determining its requirements;

4. enable us to demonstrate progress with more than written reports.

8.2 OUTCOME

During this past year we developed three prototypes: two of facets of
Honeywell's Space Station work, and one of a fragment of the RaPIER environ-
ment. The RaPIER environment prototype is described in section 9). We worked
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on the Symbolics 3460(0) using their flavor system as our software base of
reusable components and their development tools. The examples did help us ca
focus our attention on real problems and allowed us to test our solutions to
them.

.5. Each of the areas in which we are working benefited from the examples. By :'
attempting to use the prototyping methodology and watching how we actually
built and used the prototypes, we were able to test and modify the construc-
tion methodology. We generated PSDL requirements in part by looking at the
information we needed to specify for the ASCLSS and IDA prototypes. Watching
how we used the Symolics tools and where they came up short indicated the kind ..
of tool support RaPIER needs. Building prototypes helped characterize objects . -

in the software base and validate some of the reusability requirements (see
section 6). In addition, by doing examples, we gained b understanding of
space station and human factors application areas.

The RaPIER project's first example is taken from the Automated Subsystem
Control for the Life Support System (ASCLSS) program at Honeywell's Space and
Strategic Avionics Division [HONEYWELL84]. The ASCLSS program is part of
NASA's space station effort. With the ASCLSS prototype, we began evaluating
RaPIER's proposed prototyping methodology and tools, and understanding ihe
Symbolics host environment. We compared the characteristics of Lisp flavors - '
with the Ada reusability guidelines and refined our software base functional
requirements.

RaPIER's second example is taken from the Integrated Display Assembly (IDA)
project also at Honeywell's Space and Strategic Avionics Division. IDA was
originally designed as a crew interface for payload control aboard NASA's
space shuttles. IDA is currently being demonstrated as a crew interface for a *.

guidance, navigation and control application aboard NASA's space station. ' ,
With the IDA prototype, we evaluated the prototyping methodology in more
detail than with ASCLSS. In particular, we looked at the construction
methodology, the object-oriented approach, the white-box specification style,
and the requirements for the very high level system description language
(PSDL). We alsc began collecting notes on how the prototype was used by human
factors experts. This information will be used in developing an execution
methodology.

8.3 CRITERIA FOR RAPIER DEMONSTRATION/RESEARCH EXAMPLES

There are four categories of criteria for RaPIER research and/or demonstration
examples. Examples must meet as many of the criteria in each category as
possible. The criteria are:

(1) Trademark
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1. Examples must be characteristic of systems that will be prototyped using
RaP IER.

a. Examples problem must be large enough so that we are not constructing
toy prototypes, and difficult enough so that we are challenged by ¢.-
constructing them. They must be research drivers that will help us

answer questions about how prototypes are built, the kind of software
that is and can be reused, and the methods of categorizing software

IL components. .(-

b. The development of examples on RaPIER must be consistent with the
RaPIER objectives listed in subsection 9.6.1. The purpose of the
examples must be to identify end-user requirements for embeded comput-• ~~er systems. ""'-

c Examples must not actively pursue any RaPIER non-objectives (see
subsection 9.6. 2)

d. Examples must not require specialized hardware, although they may
model such hardware in software.

2. Examples must be applicable to RaPIER's intended users (see subsection
, m9.6.3).

a. Examples should be taken from Honeywell divisions. It is highly
desirable that examples come from a division that is a member of the

b."RaPIER Technical Advisory Panel (RaPTAP).
b. Examples must model the types of problems found in RaPIER's setting

(see subsection 9.6.4).

3. Examples must be good demonstration vehicles.

a. Examples must generalize a class of behaviors into a managable
problem, as the dining philosophers problem does for resource sharing.

b. Examples must have a visual representation, or be able to have one
imposed on it for demonstration purposes."'"c. Examples should be intriguing and puzzle-like.

d. Examples must be ones in which the problem as well as many of the
difficulties in solving it are "immediately" evident. t

e. Examples must demonstrate that:
- fragments built according to the reusability guidelines are indeed

reusable for prototyping,
- software fragments can be classified using the classification

" "scheme and that this scheme is useful for retrieving components
from the software base,

- the (behavior of the) overall architecture of the prototype con-
- "struction system is sufficient,
. - fragments can indeed be glued together using the methodology
"b i described in the glue study,

- a prototype can be constructed according to the construction
methodology, .

" - fragments not in the software base can be generated according to

L ."_  the fragment construction approach, and- - the operators in the software base are sufficient for building
* prototypes from fragments in the software base.
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4. Examples must be able to be developed within resource constraints.

a. Examples must be small enough to be do-able yet large enough to be F
interesting.

b. Examples must not require a significant amount of domain specific
knowledge. A prototype of an example should be easily understandable.
However, domain specific knowledge may be needed to build the proto-
type.

c. Much of the code for the examples should be available.
d. The fragments used in building an example should be useful for

prototyping similar examples.

8.3.1 The ASCLSS Example Meets the Criteria for a Demonstration Example

The ASCLSS example partially meets the criteria for a research/demonstration
example presented above. Here are the categories of criteria, and the ASCLSS
characteristics that fulfill each criterion:

1. Examples must be characteristic of systems that will be prototyped using
RaPIER.

Examples we showed on August 5 1985 is too small to be characteristic of
systems that will be prototyped using RaPIER. However, it is part of a
larger ASCLSS example that we may build, in consultation with Honeywell
divisions which are currently involved in the ASCLSS study project. Even
this "toy" has shown us how to organize a prototyping experiment, and how
to design a prototype that models the pieces of a system that are needed
for requirements investigation. In this case we are investigating whether
a functional requirement is complete, so we model the interface at which a
crew member performs the function and the system objects that implement
the function. The prototype requires no equipment beyond RaPIER itself to
implement or demonstrate.

2. Examples must be applicable to RaPIER's intended users.

This example is taken from a NASA requirements study #program that was
begun in 1983 at Honeywell's Aerospace and Defense Systems and Research
Center and is continuing at Honeywell's Space and Strategic Avionics
Division (SSAvD). Personnel at SSAvD expressed the opinion that if RaPIER
had been available, they would have used it for the 1983-4 study phase.

3. Examples must be a good demonstration vehicle.

The August 5 1985 demonstration is meant to show how RaPIER works, not how
to investigate requirements with RaPIER. Therefore, we needed a simple
example that would not get in the way of demonstrating RaPIER.
Investigating the completeness of a functional requirement provided that
simple vehicle. We demonstrated (1) design according to the construction
methodology, (2) construction from reusable software parts, and (3) U
modification by changing the PSDL (Prototype System Description Language)
definition of the prototype.
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4. Examples must be able to be developed within resource constraints.

Defining the ASCLSS example required some domain specific knowledge that
we acquired easily by talking with human-factors specialists who had

* .worked on ASCLSS. Understanding the demonstration requires no domain
specific knowledge. 50% of the prototype comprises reusable components
from the Symbolics Flavor System, which is our current "software base."
The new components (flavors) that we added to the software base (flavor
system) are sensor, actuator and database. They are all obvious candi-
dates for reuse in a continuation of the ASCLSS example and in any
embedded system. If we continue the ASCLSS demonstration in Ada rather .-

than Lisp, then the Lisp flavors will serve as designs for their Ada
implementations.

8.3.2 The IDA Example Mkeets the Criteria for a Demonstration Example

The IDA example partially meets the criteria for a research/demonstration
example presented above. Here are the categories of criteria, and the IDAj ~ characteristics that fulfill each criterion:

-1. Examples must be characteristic of systems that will be prototyped using
* RaPIER.

The IDA is a small example, but is large enough to be characteristic of
systems that will be prototyped with RaPIER. IDA was used as a vehicleI. for communicating requirements to developers of the real system. In place
of written requirements, a videotape of IDA was used to communicate the
requirements to the developers.

This prototype has shown Us what kind of information needs to be specified
for a prototype and has given us experience organizing prototyping

* P experiments and designing prototypes. The IDA prototype is not character-
istic of the entire class of systems we intend to handle in that its
purpose is communicating human factors requirements. The IDA prototype

* requires no specialized hardware. The IDA hardware can be modeled in
* software.

2. Examples must be applicable to RaPIER's intended users.

This example is part of NASA's space station program at Honeywell's
Aerospace and Defense Systems and Research Center and Honeywell's Space
and Strategic Avionics Division. The prototype was found to be a useful

d -~ means of communicating requirements between human factors experts and IDA
implementors.r

-3. Examples must be a good demonstration vehicle.

This criteria Is less important for IDA than are the other criteria. We
used IDA to understand the prototyping process rather than as athe basis
for a demonstration to external reviewers. In particular, we used it to
look at how we obtained initial requirements, what kinds of modifications
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were likely to be made, what information needed to be included in a Se

prototype specification, how well we were able to follow the construction
methodology, the prototyping exercising process, and its ability to
communicate requirements to developers.

4. Examples must be able to be developed within resource constraints. .,

Defining the IDA example required some domain specific knowledge that we
acquired easily by talking with the human-factors specialists who were .
developing the requirements. 70% of the prototype comprises reusable
components from the Symbolics Flavor System.

8.4 DESCRIPTION OF THE ASCLSS DEMONSTRATION EXAMPLE

The RaPIER project's first example is taken from the Automated Subsystem
Control for Life Support System (ASCLSS) program at SSAvD [HONEYWELL84]. The
ASCLSS program is part of NASA's space station effort.

This subsection presents a high-level overview of ASCLSS, the expected
benefits of prototyping ASCLSS, an overview of the prototyping process, and a
description of each of the four major steps in the prototyping process (see
section 3): identifying requirements to prototype, constructing a prototype,
exercising the prototype, and incorporating results from prototyping into a
response to the original requirements.

8.4.1 ASCLSS Overview

* The ASCLSS program objectives are to define a generic automation approach for
Space Station subsystems and to demonstrate the selected approach in the
control and monitoring of the air revitalization group (ARG) of the regenera-
tive environmental control and life support system (ECLSS). ARG comprises -
three ECLSS processes: a carbon dioxide concentrator, a carbon dioxide
reducer, and an oxygen generator.

The selected ASCLSS automation approach is a hierarchy of distributed control- _ -7
lers. System level, process control, and real-time operating system software
will be integrated with controller hardware to demonstrate the automated
control and monitoring of three ECLSS processes. A crew interface will be
included in the automation system to develop and demonstrate how control
authority is allocated among the crew, the upper level system controller and
the ARG process controllers.

The crew will use the system to:

o monitor the status of all processes and hardware,ao change modes,
o examine sensors/setpoints,
o examine/override actuators,
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o examine sensor trend data (7 days),
o respond to alarm/error conditions,
o review alarms/errors, and

*o examine schematic representations of subsystems.

8.4.2 Question Under Investigation

Developing a generic automation approach requires understanding the tasks that
the system will do and be used to support. Tasks on the Space Station are
described through scenarios represented by flowcharts. For the August 5, 1985
demonstration, we have chosen to investigate the completeness of the function-
al requirements for one task: non-critical unscheduled maintenance.

Our hypothesis is that the scenario for handling non-critical unscheduled
• i-maintenance (Figure 8-1) is sufficient, and that the generic automation system

provides all the functions needed to accomplish this task.
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-----------------------

problem indicatedj -

+-----------------------

+------------------------

evaluate criticalityl
4.9 +-------------------------

/OK? \--------NO: go to critical
___/ unscheduled maintenance

-7V
* +------------------------

- I isolate problem I
-----------------------

*/ISOLA- \ ------ > No: get expert assistance
\_TED? /

* +--------------------------

levaluate criticalityl
+------------------------

/NOW? \--------- YES: fix it

* +------------------------

Iget list of parts
* +------------------------

+----------------------

Icheck inventory
-----------------------

/AVAIL-\------- > YES: fix it
\-ABLE?/

-----------------------
* I order supplies

-----------------------

Figure 8-1: Non-critical Unscheduled Maintenance Scenario
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8.4.3 The Prototyping Process for ASCLSS De

Prototyping is a type of experimentation. Building and exercising a prototype
is similar to designing and executing an experiment. These are steps for
designing and executing an experiment:

o Form a hypothesis about the system under study.

o Create a model of the system that allows you to investigate the hypothesis.
o Define some metrics or measures on this model.

At this point the experiment is designed.

o Build the model and execute the experiment.
o Collect results during experiment execution.
a Interpret the results and accept or reject the hypothesis.

For the RaPIER demonstration, the system under study is part of the ASCLSS
project. The hypothesis is in the form of a question: "Does the scenario for
non-critical unscheduled maintenance accurately reflect and support the task -. ".
to be done?" This hypothesis will be tested by creating a model of the system
under study that allows users to walk through the proposed scenario. The
model will comprise a display containing three windows, a parts database, a
failure log, a prototype environment window containing an alarm and sensors,

-S and a prototype behavior pane. Measures of the model will be English language
remarks collected during prototype execution. These results will be
interpreted and the hypothesis accepted or rejected. If the hypothesis is -:

rejected, the results will also be used to modify the flowchart or the model
of the system. The experiment will continue until the hypothesis is accepted.

8.4-.3.1 Identifying Requirements to Prototype

The subset of the ASCLSS system we prototyped was determined by the
non-critical unscheduled maintenance scenario. Any part of the system needed
to support the scenario became part of the prototype. Because ASCLSS was our
first example and is small, we did not put a lot of emphasis on this phase of
the prototyping process.

8.4.3.2 Constructing The Prototype

This subsection presents the design and implementation of a prototype to model
the part of the ASCLSS system that is needed to test the scenario presented in
subsection 8.4.2. The model will allow users to carry out the scenario and

V, will also be modifiable, so that functionality may be added, deleted, or
64 changed in response to users' remarks on their initial interactions with it.

The objects in the ASCLSS model are a subset of the objects in the ASCLSS
system. The objects are determined primarily by the scenario under investiga-
tion. The model of the ASCLSS system (Figure 8-2) comprises a display
containing three windows, a parts database, a failure log, a prototype
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environment window containing an alarm and sensors, and a prototype behavior
pane. The display is presented as three horizontal windows. The top window
is a fixed status display area, the middle window is a call-up display area,
and the bottom window is a command area [HONEYWELL85].

+------------------------------------------------

---- -----------------------------1
I Fixed status display area II
----------------------------------

.- I1 - ..

---------------------------------- .

l I Call-up display area II a-

----------------------------------
----------------------------------
II Command area II
----------------------------------1I

+------------------------------------------------ . .a
ii m

---------------- ----------------

+11-------,,

I Parts database I I Alarm I ,
-.-------------------- ----------------

* +--------------------- ------ ----------
I Failure Log I-+ +-I Sensors I
----------------------- -----------------

Figure 8-2: ASCLSS Prototype Structure

The ASCLSS prototype was designed according to the operational,
object-oriented prototype construction methodology proposed in section 3. The .

overall design is a "white-box" containing problem-oriented objects. Each
object has a set of behaviors that implement the behavior of some real world
object. The methodology supposes that the problem-oriented structure of the
design will carry over into the prototype implementation. This happened very
naturally in the ASCLSS case; the prototype was implemented using exactly the
same objects proposed in the design.

We built the ASCLSS prototype in Lisp using the Symbolics's Flavor System as a .
software base. Lisp flavors are o'jects in the sense described in section 3;
programing with flavors is the Lisp realization of object-oriented program
construction CRErSCH82]. The Flavor System constitutes both software base
and software base management system for the approximately 2000 flavors
supplied with the Symbolics machine and for all the user-defined flavors.

The Flavor Examiner is the tool for querying and browsing through the Flavor S'

System. It imposes a classification scheme on the collection of flavors in
the Flavor System. This is not an explicit classification scheme, as .
described in [ONUEGBE85b], but a scheme implied by the way flavors are "
constructed. New flavors (objects) are created by combining existing flavors
according to inheritance rules. Flavors are classified in terms of what other
flavors they comprise and what methods (operations) they inherit. The Flavor r
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Examiner (qua oftware Base Browser) allows a user to navigate an acyclic

_graph of the entire Flavor System, where the nodes are flavors and the arcs
show relations among then.

The Flavor System's implicit classification scheme is different from the e
wvstrictly hierarchical scheme now envisioned for the RaPIER Software Base.

However, using it is giving the RaPIER project invaluable experience in using
a Software Base and Browser long before it can implement its own Software Base r

Management System. The Flavor System's classification scheme is based on the
' .structure of Lisp flavors (objects); RaPIER's eventual classification scheme

will be based on the structure of Ada software.

8.4.3.3 Exercising the Prototype

This section describes the process of working with RaPIER to exercise the .-

ASCLSS prototype in order to investigate the functional completeness of one
ASCLSS requirement. This process is presented in the form of a script for the
August 5, 1985 RaPIER demonstration. Each item below describes one step in
the process; the text in angle brackets describes what happens on RaPIER.

1 . <RaPIER shows a welcome message.> The demonstration begins with prototype
building. The prototype is a partial model of the ASCLSS system. We use
it to investigate the functional completeness of the requirement for

-* j handling non-critical unscheduled maintenance.

The objects in the ASCLSS prototype are a subset of the objects in the
-, ASCLSS system. The objects are determined by the scenario we are

investigating. The model of the ASCLSS system contains: a display
containing three windows, a parts database, a failure log, a prototype
environment window containing an alarm and sensors, and a prototype
behavior pane.

2. <Select the software base context; select software base window.> The first
step in building this prototype is to find objects in the software base
that either implement, or can be used to implement, the objects needed for
the ASCLSS prototype. We hope to find a window frame, a text display pane

- window, a menu selection pane, a database, a sensor, and an actuator. The
window frame will be used for the display, it will contain three panes: a
fixed status display area, a call-up display area and a command area. The
first two panes will be instances of text display pane, the third will be
an instance of a menu selection pane. Both the parts database and the

a. failure log will be instances of databases. The collection of sensors
will be instances of sensors. The alarm will be an instance of an

. .actuator.

3. <Enter "tv:essential-window."> We begin by browsing through the Flavor
System (our Software Base) until we find an object, tv:essential-window,
whose documentation indicates that its behavior must be part of all ASCLSS
windows.
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4. <Navigate the Software Base starting from "tv:essential-window."> We now
V navigate the Flavor System (Software Base) using the Flavor Examiner as a

Browser, inspecting flavors (objects) that contain tv:essential-window's ,,I
behavior, in hopes of finding some to reuse in the display portion of the
ASCLSS model. Figure 8-3 shows the paths explored, the flavors selected, .

and the ASCLSS objects which they implement.

We find three reusable objects: dI

tv:window pane becomes (ASCLSS) call-up-display-area and
(ASCLSS) fixed-status-display-area

tv: command-menu-pane becomes (ASCLSS) command-area -"

tv: bordered-contraint-frame-with-shared-io-buffer becomes
(ASCLSS) display-frame

----------- tv:essential-window ---------

+------ tv:pane-mixin -----+ tv:basic-frame
exist-
ing tv :window-pane tv: command-menu-pane
flavors

I tv: bordered-constraint-
I J frame-wi th-shared-io-buffer

S+---------------------------------+---------------------------+----------------

ASCLSS call-up-display-area, command-area display-frame DL;.
objects fixed-status-display-area°I

Figure 8-3: Software Base Flavors and the ASCLSS Objects They Implement

5. <Select PSDL window.> We now specify the display portion of the ASCLSS
prototype in the high level Prototype System Description Language
(PSDL).(1) The display portion of the prototype comprises four objects:
fixed-status-display-area, call-up-display-area, command-area, and .
display-frame.

6. <Select construction context.> Submit PSDL for translation.

*: 7. <Instantiate the display-frame.> We now attempt to instantiate a part of." "-
the prototype under construction in order to debug it. The instantiation " -
step is equivalent to the type and consistency checking step that a
compiler does on source code. We note that the display-frame object

(1) PSDL and its automatic translation into source code have not yet been L
defined. In this demonstration, we show a possible PSDL formulation of
the ASCLSS prototype and translate it into source code manually.
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cannot be instantiated. The Symbolics system tells us that display-frame
cannot be instantiated unless it responds to the :any-tyi message. Now we
must find an object in the software base that will give the behavior of
responding to :any-tyi.

8. <Select software base context; select the software base window. Find all
*..- objects that respond to the :any-tyi message.> We will change the

* prototype's PSDL specification by looking for all objects that respond to
the :any-tyi message and choosing one, based on its specification. This
matches the classification proposal in [ONUEGBE85b], which says that
objects will be classified by the messages they understand.

9. <Select the construction context.> Modify the PSDL of the ASCLSS proto-
type. Submit the modified PSDL for translation. Instantiate the
display-frame and determine that it works properly. _

" 10. <Navigate the Software Base looking for other parts of the ASCLSS
prototype.> Look for a database flavor. Look at all methods for the
database flavor; the methods constitute the flavor's specification as well
as part of its executable code. Look for an actuator flavor. Look at all
its methods. Look for a sensor flavor. Look at all its methods.

11. <Select the PSDL window.> Specify the portion of the ASCLSS prototype in
which the database flavor is used for the failure log and the parts
database, the actuator flavor is used for the alarm, and the sensor flavor
is used for the ASCLSS sensors.

12. <Select the construction context.> Submit the PSDL for ASCLSS for transla-
tion. Instantiate The ASCLSS prototype.

13. <Select the execution context.> Execute the prototype following the
scenario for non-critical unscheduled maintenance.

. 14. <Select the prototype environment window.> Here we change the prototype's
environment so that we can observe its behavior in a different environ-

" ment. Put a sensor into a warning state, and follow the unscheduled
. .. maintenance scenario with the environment (i.e., the sensor) in that

state. This leads to executing different parts of the ASCLSS prototype.

15. <Select prototype execution window. Select the remark window; type
remarks.> As we exercise the prototype with a sensor in a warning state,
we note four possible improvements in ASCLSS's user interface and func-
tional behavior.
a. Using the failure log, note that it is ordered by time and not sorted

by sensor, and remark that a sort capability on the log would be
. .. useful.

, . b. When getting a list of parts, note and remark that there must be a
space station wide code number for each part.

c. Note that there is no way to schedule maintenance. Suggest that the
unscheduled maintenance scenario show a "schedule-maintenance" task.
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16. <Stop the prototype. View remarks.> This completes the first execution of
the prototype. Look at and interpret remarks and make changes to the
prototype based on the remarks.

17. <Use software base and construction contexts to create the next version of
the ASCLSS prototype.> The next version of the prototype has a sorted .

failure log, uses a common coding scheme for parts, and can be used to "
schedule maintenance.

18. <Select the execution context; select the prototype control window.> - "
Repeat prototype execution using the new prototype. Again put a sensor
into a warning state. This time note other deficiences and remark on
them.

19. <Stop the prototype. View remarks.> This completes the execution of the "-
second prototype. Look at and interpret remarks. Decide that it is not
useful to continue prototyping.

8.4.3.4 Incorporating Results from Prototyping

The results of the prototyping session described in the previous section are
captured in the remarks made by the user. These remarks would be reflected as
changes to the initial requirements.

8.5 DESCRIPTION OF THE IDA PROTOTYPE

RaPIER's second example is taken from the Integrated Display Assembly (IDA)
project also at Honeywell's Space and Strategic Avionics Division. IDA was
originally designed as a crew interface for payload control aboard NASA's
space shuttles. IDA is currently being demonstrated as a crew interface for a
guidance, navigation and control application aboard NASA's space station.

This subsection presents a high-level overview of IDA, the expected benefits
from prototyping IDA, an overview of the prototyping process, and a descrip-
tion of each of the four major steps in the prototyping process: identifying
requirements to prototype, constructing a prototype, exercising the prototype,
and incorporating results from prototyping into a response to the original
requirements.

8.5.1 IDA Overview

The objectives of the original IDA program were to build a crew interface for
payload control aboard NASA's space shuttles which:

230 March 1986



Demonstration/Research Examples

V

o reduced shuttle payload development time and costs;
o reduced shuttle ground turnaround time;

_ o allowed greater flexibility to the mission by accomodating late changes;
o reduced crew training time/investment [BLOCK84].

IDA comprises a thin film electro-luminescent graphics display, 20 membrane
keys surrounding the display, 8 relegendable keys, a 12 key numeric keypad, a
12 key keypad with application specific labels, a 5 key cursor keypad, an
enter key, and a 3 key priority-key keypad (Figure 8-4).

Currently, IDA is being evaluated and demonstrated as a crew interface for a
*_ guidance, navigation and control application aboard NASA's space station.

User interface design experts at Honeywell's Systems and Research Center are
developing a set of requirements for a guidance, navigation and control
application demonstration on IDA.

8.5.2 Question under Investigation

We consider requirements prototyping to be an experiment where some aspect of
the requirements is investigated. For the IDA prototype, we have chosen to
investigate the completeness and consistency of the requirements specified by
the human factors design experts. For this project, we proposed using RaPIER
to sopport building a prototype for communicating the requirements to
implementors. It is our contention that:

. o the IDA requirements can be communicated at least as effectively by a
prototype as with current methods, and

o the IDA prototype will uncover conflicting, missing and unrecognized
requirements earlier than with current methods.

For the IDA prototype, our hypothesis is that the requirements specified by
. the human factors design experts are complete and consistent.

8.5.3 The Prototyping Process for IDA

Prototyping is a type of experimentation. Building and exercising a prototype
is similar to designing and executing an experiment. For the IDA prototype,
the hypothesis is in the form of a question: "Are the requirements specified

* 'by human factors design experts complete and consistent?" This hypothesis
? .-will be tested by creating a model of the system under study that helps the

human factors design experts to visualize the demonstration they are building.
; - Measures of the model will be remarks collected from human factors experts r

_ while they are exercising the prototype. These results will be interpreted
and the hypothesis accepted or rejected. If the hypothesis is rejected, the
results will also be used to modify the the model of the system. The
experiment will continue until the hypothesis is accepted.
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We followed our proposed prototyping methodology as closely as possible for
the IDA prototype. The first step in the prototyping process is obtaining
initial requirements. For this step, we talked with the human factors experts
who were developing the IDA demonstration.

The second step in the prototyping methodology is constructing the prototype.
We built the prototype according to the construction methodology: a
white-box, object-oriented approach where the structure of the prototype is
the same as the problem-oriented view. In building the prototype, it became
obvious that there were many inconsistent and missing requirements. This,
however, was expected somewhat due to the need for early versions of the

:. ~requirements. :. :

" ~The third step in the prototyping methodology is exercising the prototype. We L.

interviewed the human factors expert as he used the prototype.

The fourth step in the prototyping methodology is incorporating the
prototyping results into the initial requirements. In this case, the updated
requirements are in the form of a videotape of the modified prototype.

The four steps in the prototyping methodology are evident in the IDA
prototype. The steps are not sequential. There is a lot of iteration and
backtracking. In IDA's construction, when it became obvious that an initial

requirement was inconsistant or missing, it was necessary to return to the
first step of obtaining initial requirements. We did this by talking to the
human factors experts and by making intelligent guesses as to what the
requirements might be. Exercising the prototype with a human factors expert
included both clarifying and changing the initial requirements. Making these
changes meant returning to the second step of constructing the prototype. The

decision to make a videotape was a decision to end the prototyping process. ""

8.5.3.1 Identifying Requirements to Prototype

The requirements investigated by the IDA prototype dealt with the functions
assigned to IDA's keys and the positions and contents of fields on IDA's
screen. It was a requirement for the IDA prototype to be modifiable along
these dimensions. Binding functions to keys and fields to screen positions

O assume the existence of IDA hardware. The prototype must Include the visible
IDA hardware (that is, keys and screens).

8.5.3.2 Constructing the Prototype

_ The first step in constructin the IDA prototype was identifying the
problem-oriented objects and their structure. The objects in the IDA proto-
type design are a graphics display, 20 membrane keys surrounding the display,
8 relegendable keys with 3 large or 12 small characters each, a 12 key numeric
keypad, a 12 key keypad with application specific labels, a 5 key cursor
keypad, an enter key, and a 3 key priority-key keypad (Figure 8-4). The
several kinds of keys are simulated by software. The structure of the
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prototype is the same as the structure of the system as viewed by the human
factors experts. Because most of the objects are visible, attributes such as
size and position can be specified.

Next, the behavior of each of the objects is defined. Since there are several
objects of each type, the type of each object is identified. Defining objects
behavior in an object-oriented paradigm is equivalent to defining the methods
the object will respond to. In the case of IDA, all types of keys respond to
the "press" message. Their behavior is determined by a function that causes _
some effect on the screen, relegendable keys, or audible bell. In addition,

relegendable keys respond to the message "set-label" which has the visible
effect of changing the label on the keys. The screen responds to many
screen-like functions including: "set-cursor-position,"
"get-cursor-position," "clear-screen" and "output-string." The communication
structure is simple. The user sends messages to the keys. The keys affect
their environment by sending messages to the screen, relegendable keys, andaudible beeper.

After some initial design of the prototype, specifying any more detail about

the behavior of the objects became difficult. At this point, the software
base was searched for objects that were "close" to the objects needed for the
prototype. The Flavor System on the Symbolics served as our software base.
Since most of the objects in the prototype are visible, they are based on
tv:window-pane. New objects types were created for a generic key type which
is based on tv:window-pane, for each type of key (which are based on the
generic key type), and for a screen type which is based on tv:window-pane.
The new types contain tailoring information and methods that are specific to J
the new object. Creating new types for screen and key rather than using
instances of tv:window-pane has the advantages of making the prototype more
easily modifiable and making the prototype implementation structure the same
as the problem-oriented structure.

The desired behavior of objects in the prototype is then refined based on the
knowledge of existing components and the needs of the prototype. This process --

of working top-down then bottom-up continues until the desired behavior of the
prototype objects converges with the actual behavior of the available compo-
nents.

8.5.3.3 Exercising the Prototype

When a prototype of the initial requirements was complete, we interviewed a
human factors expert while he viewed and manipulated the prototype. The
process of exercising the prototype uncovered many inconsistencies. For
example, specifications of the screen formats were written on paper about 90
characters wide. Another requirement was that the screen was 53 characters
wide. When prototyped, many of the screen formats were clearly unacceptable.
As another example, cursor movement was unspecified in the initial require-
ments. Pressing the move left key 40 times to get from the right of the
screen to the left of the screen was clearly unacceptable. This led to a new j
requirement.
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Sw.

8.5.3.4 Incorporating Results from Prototyping

After many iterations and much backtracking, we ended the prototyping process
and made a videotape to record the state of the final prototype. That
videotape was delivered to the implementors of IDA. We have yet to evaluate
the effectiveness of the videotape and prototype as a vehicle for
communicating requirements to the implementors of the IDA demonstration.

8.6 BENEFITS OF EXAMPLES TO THE RAPIER PROJECT

" Each of the areas in which we are working benefited from the examples.
Through attempting to use the prototyping methodology and watching how we

actually built and used the prototypes, we were able to test and modify the
construction methodology. We generated PSDL requirements in part by looking
at the information we needed to specify for the ASCLSS and IDA prototypes.
Watching how we used the Symolics tools and where they fell short indicated
the kind of tool support RaPIER needs. Building prototypes helped character-
ize objects in the software base and* validate some of the reusability
requirements (see section 4). In addition, by doing examples, we gained an
understanding of space station and human factors application areas.

This subsection describes benefits of examples to the prototyping lifecycle,
the RaPIER protoype envineering environment, the software base and reusability
guidelines.

8.6.1 Prototyping Lifecycle Benefits

Many of the benefits of building prototypes are methodology related. RaPIER's
" prototyping methodology has four phases:

1. identifying requirements to prototype,
2. constructing the prototype,
3. executing/exercising the prototype, and
4. incorporating results from the prototype.

The benefits to each of the four phases are described in order.

We found that deciding which requirements to prototype was not always clear to
the application area expert. This fact makes a strong case for making
flexible and easily modifiable prototypes.

I[ When constructing a prototype, the object-oriented approach was very useful.
It allowed the builder to implement the prototype in the same terms as (s)he
understands it and localize changes. It was also clear that there was no
unique problem-oriented view of the objects in a system. Everybody sees the
system from their own perspective. However, people can accomodate to a
particular structure that is not exactly like their own concept, if the
structure is reasonable. The white-box specification technique turned out to

Honeywell Computer Sciences Center 235
° .'



Final Scientific Report: RaPIER Project (Contract No. NOOO41-85-C-0666)

be very useful in describing a prototype. Both developers and application

area experts use SL, icture to describe the prototype. The prototypes also
gave us a means of determining information required in a PSDL specification. Ll !

While exercising the prototype, it was clear that this step may require more
than simply a reaction by the application area expert to the prototype. In
the case of IDA, prototype exercising was more like an interview than a
reaction.

We did very little work with incorporating results from the prototype into a
requirements document. We did however make a video tape of the prototype to
use as part of the requirements specification to the implementors of the
application on the real IDA hardware.

The benefits of building IDA for the RaPIER project are that we:
o learned the nature of interface prototyping and the kinds of objects needed

for interface prototyping so that we can compare it with other kinds of
pro totyping,

o learned about the experiment/modify cycle and building modifiable objects,
o learned about the execution methodology, including acceptable "response

time" for modifications,
o learned about prototype building from initial customer requirements,
o observed effects of a prototype vs. a written document as an engineering ..-

specification to implementors,
o learned how human factors experts work.

8.6.2 RaPIER Prototype Engineering Environment Benefits

The benefits to the RaPIER prototype engineering environment are detailed in
section 9.4.2. Some prototype engineering environment questions answered by
the examples are:
1. What tasks are needed for prototyping?
2. What functions are needed to support each task?
3. How are the functions be partitioned onto windows?
4. What windows are visible simultaneously?
5. Does each window support its task?

8.6.3 Software Base and Reusability Benefits

Many of the objects in the software base are not directly reused. Instead,
new types of objects are created to encapsulate parameters needed for a
particular prototype. These new objects are very problem specific. Often, an
object type exists in the software base, yet a new object type is created.

7 This makes the prototype more easily modifiable and allows the prototype
implementation structure to be the same as the problem-oriented structure.
Recognition of this sort of object type usage has a significant impact on the

I. kinds of objects we envision to be in the software base. ".

236 March 1986
-



Demonstration/Research Examples

8.7 FUJTURE WORKpJ
-'. ,: .'.

We will continue to use examples to drive, evaluate and validate relevant
aspects of our work. In the coming year, we will build design prototypes of
critical parts of the RaPIER system design and then use an example to validate
the RaPIER tools as well as the methodologies and concepts they support.

While searching for appropriate examples, we found that a significant number
* L- of Honeywell divisions want (or say they want) design prototypes for

evaluating design alternatives. The tools they envision are special purpose
tools unique to their work. It is likely that this need will affect RaPIER's
future development plans. However, because we feel that requirements
prototyping is a prerequisite for design prototyping, we will develop a
requirements prototyping capability before tackling the harder problem of

-l design prototyping.
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SECTION 9

RAPIER PROTOTYPE ENGINEERING ENVIRONMENT

This section presents initial requirements for the RaPIER prototype engineer-
ing environment, and an evaluation of those requirements based on our
experience in using a fragmentary prototype of RaPIER. The results reported
here were achieved under contract task H1.5 and with Honeywell internal funds.

9.1 PROBLEM STATEMENT

RaPIER's goals are to develop a prototype engineering environment and to
ensure transfer of this engineering environment from sheltered research
surroundings to the production milieu.

Meeting these goals is challenging in two respects:

o requirements of engineering environments for building prototypes are not
well understood (which is implied by the fact that none have been built),
and

o technology transfer is often unsuccessful (IEEE83I.

Since we believe that prototyping is the appropriate method for ensuring that
a system meets its users' needs, our approach is to develop a prototype
engineering environment as a series of prototypes (see section 1.4). We will

" involve potential RaPIER users in the evaluation of these prototypes in order
. .- to help us converge on a subjectively satisfactory environment.

9.2 OUTCOME

* . Our first major milestone in this area was the completion of the initial
-- -' RaPIER requirements. We used these requirements as the basis for building a

prototype/mockup of the RaPIER prototype engineering environment. We
demonstrated this prototype to potential users through on-line demonstrations
and a video-tape. We then evaluated this prototype against the initial

. requirements and against our own reactions to it.

-. 5..
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9.3 RAPIER INITIAL REQUIREMENTS

RaPIER is a methodology and automated system for Rapid Prototyping to
Investigate End-user Requirements. The RaPIER project is a research and
development project: research to investigate prototyping methods and tools; .-

development to implement a prototype of the RaPIER system.

This section reports the first steps in a self-experiment in prototyping to
investigate RaPIER's end-user requirements. The experiment comprises: r-.

1. Writing imprecise initial requirements for RaPIER in English. The
requirements are imprecise because RaPIER is currently a poorly understood
system. RaPIER is poorly understood because research is needed to ."
determine what methods it is automating, and how those methods should be
automated. -

2. Building a prototype for RaPIER from these imprecise requirements. During
prototype building we will

o observe how we (the RaPIER team) interpret requirements,

o observe what requirements we choose to investigate with the prototype,

o observe how we build the prototype, and

o measure how many resources (time, money) prototype construction uses.

3. Experimenting with the prototype, and modifying it until we feel (intul-
tively) it models a subjectively satisfactory
prototype-development-system. During our experiments we will

o observe what reactions we, and anyone we can convince to experiment

with our prototype, have to each version of it,

o observe what modifications we make to the prototype,

o observe when and how we decide to stop prototyping, and

o measure how many resources (time, money) the prototype exercise-modify -
cycle uses.

4. Incorporating prototyping results (for example, the prototype's code or
remarks on it) into an engineering response to the initial requirements-
a more complete written document which is the basis for RaPIER's design
and implementation.

5. Recording all the observations and measures we take. '.

4. Ma.,-
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RaPIER Prototype Engineering Environment

9.3.1 Introduction

h RaPIER is a methodology and automated system for Rapid Prototyping to F J
Investigate End-user Requirements. The RaPIER project is a research and V
development project: research to investigate prototyping methods and tools;
development to implement a prototype of the RaPIER system. This subsection
presents the requirements for RaPIER's automated facilities. The requirements
reflect the fact that research is an integral part of the project, and that

IV RaPIER comprises both methodology and automated facilities.

RaPIER's organizational paradigm is the context. A context provides informa-
tion or services. The user model of contexts is that contexts are like papers
on a desk: a context is opened for work and abandoned when a new task is
started. The users' model of RaPIER is of a collection, not a hierarchy, of
available contexts. Users' interact with RaPIER by selecting the context that
provides the desired services, using those services, and selecting another
context for the next task. Contexts are manifested through windows on a
workstation screen. Basic services may be provided in many contexts by
support functions that are available without context switching. For example,
the time of day may be available in any context through a function key.

. This report presents RaPIER's requirements as a collection of contexts and
support functions. Each context represents a desired (set of)
capability(ies), not a module in the system's architecture. The device of
presenting major requirements as contexts reflects the user-model of RaPIER we
wish to promote; the particular contexts chosen (see subsection 9.3.5) are not
intended to suggest a system architecture.

There are core and non-core requirements. Core requirements must be
implemented in order to have a functioning system. Non-core requirements are
either desirable but not necessary functional capabilities, or capabilities
that are necessary but infeasible to develop within RaPIER's timeframe,
staffing, and funding. Non-core requirements are marked with an exclamation -
point (1).

Requirements we are unsure of are written in curly braces [I; they will be
investigated by prototyping.

The subsection is organized as follows: IA
* o 9.3.2 discusses requirements and development decisions already made.

o 9.3.3 presents some fundamental principles of the RaPIER research work and
general requirements for the automated system that augment and pervade the
specific requirements.

o 9.3.4 lists RaPIER's objectives.

o 9.3.5 and 9.3.6 present RaPIER's contexts and support functions.

o 9.3.7 describes non-automatable methods.
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o 9.3.8 lists some open questions.

o 9.3.9 discusses development workstations.

o 9.3.10 discusses prototyping as exploratory programming.

9.3.2 Decisions Already Made "

Five decisions have been made that constrain the project's research methods
and RaPIER's design and implementation. These constraints help the project by
providing early focus. The decisions are:

1. RaPIER is for prototyping only. Prototyping is a kind of exploratory ..

programming activity that produces prototype systems for use by a moderate
number of people to test ideas about the requirements under investigation,
not about the prototype-program itself. RaPIER is not deliberately
designed to be a multi-purpose environment for developing prototypes and
other software. RaPIER is designed to support the development of
"throw-away" prototypes, not incrementally developed systems. It will be
a happy accident if RaPIER turns out to be useful for incremental
product-development; however, we will not make deliberate design decisions
that serve incremental development.

* 2. RaPIER's front-end resides on a powerful personal workstation that can be

networked to heterogeneous hardware/software. Our prototype version of
RaPIER will not be implemented for a time-sharing system, or for a PC type
personal computer. See subsection 9.6 note E for a discussion of the -.-

benefits of workstations, a definition of "powerful," and a Justification
of the need for a "powerful" workstation.

3. RaPIER is a distributed system. Making RaPIER distributed from the start

is a forced choice, a result of our cooperation with an independent
company which is implementing RaPIER's software base (SWB) on a Unix
platform, probably an Apollo. RaPIER's workstation front end will commu-
nicate with the SWB through a user interface and a programmatic interface.
The SWB will be available over a local area or long-haul network.
Distributing RaPIER is a burden: our research is in prototyping, not in E.

distributed system development, yet we have to tackle distributed system
problems. On the bright side, distributed development systems are the
wave of the future; RaPIER will not be obsolete before it is deployed.

4. We will develop RaPIER by prototyping because: - "

o We believe in prototyping as a method for identifying end-user require-
ments and choose to use the method we believe in.

o We advocate prototyping especially when requirements are not well .-" -

understood; RaPIER's requirements are quite fuzzy at present. f

242 March 1986



--, -..x ..

RaPIER Prototype Engineering Environment

o We already have a baseline RaPIER prototype (see 5 below) which puts us
years ahead of developing requirements from scratch.

o We propose to develop prototype construction and use methodologies.
Methodology is best developed through experiments with real problems.
RaPIER's development is a valuable self-experiment.

. ". e'."

5. The Symbolics 3460(1) is RaPIER's platform and our experimental vehicle.

As a platform, the Syubolics provides a powerful personal workstation (see a.

2 above) and a software library of some 10,000 Lisp functions and flavors
(abstract type definitions) which

o play the role of reusable software for software-base research and 4
emulation,

o are available to incorporate into RaPIER,(2) allowing us to experiment
with prototype building by reusing software modules.

As an experimental vehicle, the Symbolics is a well thought out, product
quality, development environment. We are also creating a development
environment. During requirements definition, we can assume that the

Symbolics is our level zero prototype and modify it until we have a
prototype for RaPIER. During design and implementation, the Symbolics is
a laboratory animal we can poke and prod to find out how the requirements
we have identified are realized in one high quality development environ-
sent.*1 L

9.3.3 General Principles and RaPIER-wide Requirements

These general principles guide our research work:

* 1. This project is a feasibility demonstration of

o constructing prototypes from reusable code,
o using prototypes to clarify end-user requirements.

This demonstration is complex enough without the added problems of L.
developing a good development environment, so we will exploit the chosen
platform as much as possible.

. -2. Using our prototyping paradigm to identify RaPIER's requirements implies .
' informal initial requirements statements (like this one), quick

prototyping of RaPIER's requirements re-using the Symbolics's software as

. ,(1) trademark

(2) N.B. This implies that at least some of RaPIER, and probably all of early .RaPIER, will be developed in Lisp.
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much as possible, testing the requirements by applying the RaPIER proto-
type to sample problems, and modification of RaPIER in response to the
results of our experiments. We will work in the same manner as we expect
RaPIER's users to work.

3. Useful development environments are based on a theory of how development
is done. RaPIER should be based on a theory of how prototypes are
constructed and exercised for requirements clarification. RaPIER should
model a theory of prototype development that corresponds, as much as
possible, to users' intuition about how they go about developing and
executing prototypes.

4. It's hard to introduce an unplanned feature into a partially developed
system, so we will propose "the world" in these requirements, identify the
core elements of the methodology and automated tools, develop those, and
provide "hooks" for the world. It may be true that some wish-list-item
that appeared hard to provide is in fact easy to implement. Experimental
systems should be specified with everything we know how to ask for,
because such specifications are not implementation contracts, but only
working lists.

5. To avoid severe technology transfer problems, and to keep us aware of what
we're about, we will develop user documentation early.

These are some overall requirements on the RaPIER system:

1. (1) RaPIER offers reliable file service.
RaPIER's main file server (either a local or remote, large capacity ...
server) should be available with probability

P(file-server-up) > P(one-or-more workstations up)
which can be restated as
P(file-server-down) < P(all workstations down)

(We will not try to meet this requirement in our initial implementation.
It is stated so that platform choices for this and later versions of
RaPIER can tend toward a highly reliable file server.)

2. Minor changes are visible quickly. ;
Minor changes to a prototype during construction or exercise should be
visible quickly. This implies that minor changes must be displayed
without resetting the prototype to an initial state (such as its start
state) and running it until it reaches the state from which the change was
made. This requirement implies that dynamic linking is needed in both the
construction and the execution contexts.

3. RaPIER is a development environment.
RaPIER should provide the desiderata of any good development environment
[TEITELMAN84]. Two such are:

. Mc 1.6
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0 modeless context switching, because we expect developers to use several
cooperating functional capabilities to carry out any task they do;
uniformity of user interfaces, because we expect developers to be
experienced enough to become experts with RaPIER as they use it,

inferring new usage modes from familiar patterns.

Other general development-environment requirements will be identified
through experiments with RaPIER's prototype, the Symbolics.

4. (!) RAPIER automates prototype documentation.
As such as possible, a prototype under development should be automatically
documented; RAPIER should be able to produce some documentation from
internal information about the prototype and its components.

5. RAPIER provides "positive-chatter."
RAPIER must provide ongoing "positive-chatter" to inform users of what's
going on (what context the user is in, what options are available with the
mouse, what the state of the context is, and so forth). RaPIER should not
communicate only negative information. This is especially important since
some RaPIER services, such as making a network connection, require large
enough amounts of computation to make the system appear to "hang."

6. RaPIER collects bugs and gripes.
Provide a bug reporting and a gripe "mailbox." The mailbox can be a file,
an electronic mail connection, or any other means which users can complain
into conveniently. This will please testers and pilot project users, will
collect useful data for developers, and may prevent some midnight phone
calls. During RaPIER's pilot project phase, a gripe address is essential.
Since a new system does not stabilize for years, a gripe file can collect
information and alleviate user frustration even when RaPIER is transferred
into divisions.

7. RaPIER resides on an advanced platform.
We expect RaPIER to survive into the 21-st century; we should not design
it for 1970's hardware and software technology.

8. RaPIER is a language dependent system.
Make its functional capabilities serve the PSDL (Prototype System Descrip-
tion Language) or Ada wherever reasonable. For example, provide structure
editing capability rather than general text editing capability only.

9.3.14 RaPIER System Objectives

The RaPIER System will
'..

1. automate prototyping for the timely identification of end-user require-
ments;

2. support prototyping of ECSs in Ada;
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3. model a theory of prototype construction and execution;

4. support prototype construction and execution in the defined setting (see
subsection 9.6 note C;)

5. support prototype construction and execution for the defined users (see
subsection 9.6 note D;)

6. be extensible; the design must accomodate enhancements; i

* 7. be transferrable; that is, meet the expressed need, be documented, be rl
robust, be accompanied by training materials, and be supported by
consulting services from its builders;

8. make it easy to reuse Ada software; I
9. be a tool that may be used along with other system development tools.

9.3.5 Contexts

The following subsections present the major contexts in RaPIER's conceptual
design. They do not suggest an architecture for the system design, but do ,' '-
indicate the users' architectural model of the system.

9.3.5.1 RaPIER Top Level

Function:
1. RaPIER Top Level displays a system "title page."
2. RaPIER Top Level tells users how to reach other contexts. •
3. At new invocation, RaPIER Top Level may personalize the user's environ-

ment.

Operational Requirements: none

Performance Requirements: Title page text must appear within [one minute}
after RaPIER is invoked.

Interface:

INPUT SOURCE INTENT

init select signal user or other Signals the beginning of a new
context interactive session between RaPIER and

a user. Should cause tailoring of the
user's environment if the user desires :%

and if personalization information
exists. May cause display of banner
information and navigation information.
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- select signal user or other Signals the selection of this context.
context May cause display of banner information

a iand navigation information.
personalization info User or file A collection of parameters that define

server the user's personal environment.

OUTPUT DESTINATION INTENT

title page info screen banner information about RaPIER.
[Details to be determined by
prototyping. "

navigation info screen tells user how to get to other contexts
(services and information).

Assumptions/Preconditions: Weak assumption: A large-capacity file server is
available. The user should be allowed to enter RaPIER even when the file
server is unavailable.

. Exceptional Conditions: The large capacity file server is unavailable.
Personalization information may reside on the file server. Unavailability of
the file server should be treated as absence of personalization information
and the user should be allowed to enter RaPIER. When environment
personalization is requested, a message must be given that personalization was
impossible because a file was unavailable, and the user may be given the
chance to furnish information interactively.

Remarks:
1. RaPIER Top Level is a hallway from which to go elsewhere. It is needed,

at least, because you have to be somewhere upon system invocation.
2. Top Level should provide the user with the means to reach other contexts

without requiring the user to request them directly.

9.3.5.2 Context Opener
.1°

Function:
I. Context Opener opens a context selected by the user or by a function in

another context. If the selected context has not been open before,
opening comprises instantiation and opening. If the selected context has
been opened before, the context is re-opened in the state in which it was

* -, 2. most recently abandoned.
2. Context Opener provides these methods for users to select a context:

o function key sequences or mouse-sensitive menu,
o (optionally) typed input. r

:'-: Operational Requirements: Any typed input must be editable using a subset of
the system's editor commands. Context Opener may be abandoned; in that case
the system remains in the context from which Context Opener was invoked. -..
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Performance Requirements:
1. If the menu is used, it must be displayed within [two seconds}.
2. A requested context must be opened within [one minute}. Note that a

context may be open but not available to the user for some time because of
initialization activities controlled by the opened context.

Interface:

INPUT SOURCE INTENT
u select signal user Signals that the user wants to change

- contexts in RaPIER. Triggers acquisi-
tion of the name of the target context ,
[ and possibly other information, to be

determined by prototyping}.
Cselect_signal other context Signals that a context change in RaPIER

is needed. Triggers acquisition of the
name of the target context [and possi-
bly other information, to be determined
by prototypingi. - *.'

target context user or other Name [and information about) a context.
context Triggers immediate opening of that con-

text.

OUTPUT DESTINATION INTENT
navigation info screen Instrument for the user to choose the

context to be opened. Triggers acqui-
sition of a context name [and other
information}.

error indication screen {and/or indication that target context cannot :. r:-
audiol be opened. -'

Assumptions/Preconditions:
1. Context Opener has a list of all known contexts, system or user supplied; -

only contexts on the list are candidates for opening. ""
2. Context opener may be invoked by the user or another context at any time.

Exceptional Conditions: .
1. Nonexistent selection by user: User's input does not name a known

context. Error handled by attention-getting visual and/or auditory feed-
A. back, and an error message on the screen stating the problem. User is a- '

then allowed to choose again. If the user makes no selection, the system
remains in the context from which Context Opener was invoked. .

2. Nonexistent selection by other context: [Return error message to the
other context). "

Remarks: The user model of contexts is that contexts are like papers on a
desk: a context is opened for work and abandoned when a new task is started. -

Abandonment is accomplished by opening a new context. Contexts do not have to
be explicitly closed; all abandoned contexts remains in the environment
waiting to be opened again. This is unlike the Apple Mac model, which
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requires users to close one context before they can open a new one. This
model must be supported by system memory management to assure that the user
doesn't run out of workspace too quickly.
There must be context management support that maintains the list of contexts,

and adds new contexts to the list.

Only a single context is active at any one time, where active means accessible

which multiple contexts may be visible though not active. These visible but
inactive contexts are either unchangeable or changeable. A changeable context
has a program running against it whose progress may change what appears on the
screen. That program can do anything which does not require user interaction,
including input from and output to devices. If/when that programs needs to
interact with the user, the context in which it is running becomes
unchangeable. An unchangeable context is one whose associated activity is
making no progress.1

9.3.5.3 Prototype Construction

Function: To provide prototype development capabilities (see Remarks)

including

1. PSDL (Prototype System Description Language) System containing -

o PSDL Editor - If PSDL is text, this can be general editing capability
" .y. in the window, but should be a structure editor for the language. If
*c. PSDL is graphical, this can be a general graphical editor, but might

have some knowledge of PSDL. (!) The Editor should report .
syntactic/semantic errors in fragments under development.

o PSDL Language Processor that
- gathers input tokens into PSDL statements, and PSDL statements into

a PSDL fragment,
- provides immediate execution of PSDL fragments, and error reporting.
- [The Processor can interact with the SWB (more powerfully than as a

9, terminal for remote logins) to retrieve needed code.}

o (!) PSDL Debugger to automate fixing PSDL "programs" (If this debugger
is at all sophisticated, ISSI has to provide It.)

2. Ada Language System containing -

- Ada Language Processor - for reusable and newly developed prototype
fragments. May be compiler, interpreter, or mixed processor. Should
allow [the appearance of} incremental execution of program fragments.
Should allow dynamic linking and unlinking of program units.

- Ada Debugger - if prototype developers see Ada code.
- Ada Editor -if prototype developers see Ada code.
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3. Software Base (SWB) Interface - remote services for user level interaction
with the SWB using the SUB's user interface.

4. (!)Fragment Generation Capability - Fragment generation would replace
developing needed code through line-by-line Ada coding with a higher level
generation capability analagous to business data processing application I .
generators such as Focus or Nomad. r.

5. [Prototype Development Tools - like the Symbolics Machine's flavor inspec-
tor. The nature of the tools will be determined by prototyping}.

* 6. [Means to incorporate software from sources other than the SWB into the
prototype - these will be worked out by research and prototyping.}

Operational Requirements: Any typed input must be editable using a subset of
the system editor's commands.

Performance Requirements: [TBD}

Interface: This interface is the collection of the interfaces of the
context's pieces, plus

INPUT SOURCE INTENT
select Context Opener This context is to be opened. [What

"opening" means will be determined by

prototyping. A possible implementation
is that every context interprets Con-
text Opener's signal and does all the
work involved in opening itself. The 1A
work necessary will be determined by .
prototyping.} W-}

[kill Kill Context This context is to be killed as defined
in Kill Context. One possible
implementation is that every context
interprets Kill Context's signal and
does all the work involved in killing
itself. The work necessary will be
determined by prototyping. A second A

possible implementation is that Kill
Context does all the work.}

Assumptions/Preconditions: Weak assumption: SWB services are available. The
4.." user should be allowed to work in the prototype construction environment even
* when the SUB is unavailable.

Exceptional Conditions: The SWB is unavailable. The user should be informed
of this and allowed to continue.

Remarks: Prototypes are constructed from reusable Ada software parts, stored
in a Software Base (SWB) and managed by a Software Base Management System. A
prototype developer interacts with the SWB to search for appropriate parts,
then specifies the prototype in PSDL. PSDL statements comprise "software base
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operators" and the names of reusable parts. The PSDL "program" is translated
into an Ada program containing (1) the reusable Ada parts, (2) other AdaS statements that glue the parts together into a single executable program. The
"other" Ada statements are translations of the software base operators used in
the PSDL program. Developers may also acquire reusable components from

-" *" sources other than the Software Base. (see [FRANKOWSKI85] for a more complete
explanation.)

I.. Between prototype execution sessions, the following off-line changes to the
prototype will be made in the construction context:
o changes to the PSDL specification of the prototype. [Eventually the

execution context might support changes to the PSDL without an explicit
context switch to the construction environment; initially such a context
switch will be required. Such support in the execution environment will
come from offering construction functions as support functions, similar to

- .editing functions.}
o changes to the Ada code of a prototype module. [Initially done with an

explicit context switch; eventually handled in the execution context
without a user requested switch. Such support in the execution environment
will come from offering construction functions as support functions,
similar to editing functions.} Eventually prototypes should be viewed as
PSDL objects, not Ada objects, and the Ada code will be examined and/or
changed as often as assembly code is examined when programming in a
higher-level language.

We estimate that developing a fragment generation capability is as big a job
as the remainder of the RaPIER project.

9.3.5.4 Prototype Execution

Function: To provide prototype execution capabilities including:

1. Incremental execution - used during prototype construction to execute
fragments provided to this context by the Construction Context.

2. Prototype execution - the facility constructs a "world" including proto-
type interaction, comment/reaction and execution control windows. Execu-
tion control includes
o a checkpointing service that may be invoked by the user,
o the ability to modify prototypes' data tables, (NOTE: This assumes

table driven prototypes.) and,
o the ability to restart the prototype from a checkpoint with new or

- "modified components or data tables linked into the running prototype.

Operational Requirements: {TBD}

-. Performance Requirements: [TBD"

Interface: This interface is the collection of the interfaces of the

context's pieces, plus
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INPUT SOURCE INTENT
* select Context Opener This context is to be opened. fWhat

"opening" means will be determined by
prototyping. A possible implementation
is that every context interprets Con- 41

text Opener's signal and does all the

work involved in opening itself. The
work necessary will be determined by
prototyping.

[kill Kill Context This context is to be killed as defined .
in Kill Context. One possible
implementation is that every context
interprets Kill Context's signal and
does all the work involved in killing
itself. The work necessary will be
determined by prototyping. A second
possible implementation is that Kill
Context does all the work.}

Assumptions/Preconditions: (TBD}

Exceptional Conditions: (TBD}

Remarks: We will not work on the Execution Context during the first year of
the project. We will do enough work provide the execution facilities needed
in the Construction Context. That work will be determined by prototyping.

9.3.5.5 Software Base (SWB)

Function: Provides services (see [FRANKOWSKI85] for details) for managing a
collection of reusable software including:

1. a query language used to access descriptions of reusable (Ada) parts and
the parts themselves,

. 2. a browser interface used to investigate the contents of the SWB when there
is too little information to formulate a precise query,

3. a set of SWB operators that enable developers to compose new programs out
of existing modules in the software base,

4. a catalogue containing schema that describe all the modules in the SWB,
maintain each module's history, and keep configuration control informa-
tion,

5. a network interface that provides SWB user-services to a front-end
prototype development station,

6. a programmatic interface that allows other programs to query the SWB
without user interaction.
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Operational Requirements: Must have the same availablity as the main file
server (the server is described in 9.3.3).

Performance Requirements: Response time to queries {TBD}. Response time for
remote procedure calls {TBD}. (Note the assumption that the programmatic
interface to the SWB will handle remote procedure call rather than
asynchronous communication by message passing.)

16 Interface:
. User controlled: Using the browsing and query facilities through the

SWB-supplied user interface which is provided on the RaPIER front end.
Software Controlled: Using the SWB programmatic interface to make remote
procedure calls to the SWB management software.

Assumptions/Preconditions: The SWB resides on a Unix machine; there is a I.
network connection between the software-base and the workstation front end.

Exceptional Conditions: Network down; SWB unavailable. See [FRANKOWSKI85]
for error messages and conditions returned by the programmatic interface.
Remarks: The extent and quality of the implementation of these requirements

". depends on how much funding we have to devote to distributed problems and on
how much ISSI provides at the SWB end of the communication between front and
back ends.

9.3.5.6 User Help and Training

Function:
1. For RaPIER: Provides on-line documentation of all the system's contexts,

on-line help that is apropos of the context in which help is requested,
- and tutorials for some contexts.

2. For a prototype that is executed for requirements investigation: Should
provide some documentation and a tutorial about the prototype; may provide

* .some on-line help apropos of place in the prototype.

L Operational Requirements: {TBD}

Performance Requirements: [TBD}

- . Interface
User controlled: {Accessible through some combination of menus, function

keys, and typed lines to be determined by prototyping.}
Software Controlled: Any context providing "help" will use the functions

" .provided by this context.
'°8.

Assumptions/Preconditions: [TBDI

Exceptional Conditions: {TBDI
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Remarks: In part, this capability should be a set of lower-level functions
that can be invoked by other software to provide help or documentation without
necessitating a context switch. We should use the Symbolics 6.0 Document
browser as a prototype for the on-line documentation services.

9.3.5.7 (1) Incorporating Results

Function: To incorporate the results of the prototying exercise into the .

engineering response to the user's initial requirements by converting the
final prototype and information about it into requirements statements. The ... -,,

engineering response is a written document and is the basis for system design "

and implementation.

Operational Requirements: [TBD}

- Performance Requirements: [TBD}

* Interface:

Assumptions/Preconditions: [TBD}

*. Exceptional Conditions: {TBD}

Remarks: This element of the RaPIER methodology will not initially be
supported by computer tools. In principle, and with a great deal of research,

- this step could be automated.

- 9.3.5.8 Services

The system will provide the "usual" development environment services: mail,
general editing, document preparation (WYSIWYG or compose-like). Services to
be provided will be determined by prototyping.

Many development services are already available on the Symbolics; for the
initial RaPIER system, we will not work on improving what Symbolics offers.

9.3.6 Support Functions

The following sections present support functions which will be available in
- many contexts.
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9.3.6.1 Construction Database

*Function: A database for holding and managing the state of the prototype7
under development. It contains:
o PSDL (Prototype System Description Language) representation,
o Ada source/object for pieces of the prototype,
o prototype documentation

- user information and training materials,
- design documentation for the prototype, for example, rejected alterna-

- tive interpretations of some requirement,
o user requirements statements, and
o other information as determined by prototyping.

- This is common space shared by developers working on the same prototype. This
service does not prevent developers from maintaining a private file space.
The service should meet baseline requirements for a development data base
IONUEGBE85a], for example, configuration control.

Operational Requirements: [TBD}

Performance Requirements: {TBD}

Interface: :
User controlled: See QUESTION below.

" Software Controlled: [Other contexts use DB services by invoking functions in
the DB's programmatic interface.}

available. The user should be allowed to work in RaPIER even when the file
server is unavailable. [Limited DB services are available even when the file
server where the physical DB resides is unavailable.}

Exceptional Conditions: The large capacity file server is unavailable. The
DB may reside on that file server. Unavailability of the file server should
not prevent the user from working on construction. A message must be given
that the server is unavailable, and limited DB services provided when the file
server where the physical DB resides is unavailable.

Remarks: The DB will start out as the Symbolics's file system and some
intelligent manual guidelines for its use. It may ultimately be part of the
ISSI SWB, or a separate DB connected to or resident on the front end
workstation.

QUESTION: Besides being a service, should this be a DB the user can read from
directly? write to directly? What concurrency control services are needed in
this shared DB?

Honeywell Computer Sciences Center 255

..................................................................



-. 7- - T .0 V -

Final Scientific Report: RaPIER Project (Contract No. N00014-85-C-0666)

9.3.6.2 Execution Database

Function: A database for holding and managing the state of the prototype
being exercised. It contains:
o execution checkpoints,
o remarks about the prototype,
o versions of the prototype,
o fother data as needed.}

During prototype execution we expect that the prototyper will not maintain a
private file space. Prototype exercise is an experiment. The experiment's
lab notebook (the execution database) should hold all the data the experiment
generates.

Operational Requirements: [TBD}

Performance Requirements: TBD}-

Interface:
User controlled: See QUESTION below.
Software Controlled: [Other contexts use DB services by invoking functions in
the DB's programmatic interface.)

Assumptions/Preconditions: Weak assumption: A large-capacity file server is
available. The user should be allowed to work in RaPIER even when the file
server is unavailable. [Limited DB services are available even when the file
server where the physical DB resides is unavailable.}

Exceptional Conditions: The large capacity file server is unavailable. The
DB may reside on that file server. Unavailability of the file server should
not prevent the user from limited work on execution. A message must be given
that the server is unavailable, and limited DB services provided. See Remarks
below.

Remarks: The DB will start out as the Symbolics's file system and manual
guidelines for its use. It may ultimately be part of the ISSI SWB, or a
separate DB connected to or resident on the front end workstation.

The goal is that prototype exercise be a traditional laboratory experiment =
during which no private data are recorded outside the "lab notebook," which is
the execution database. We wish to record everything that happens during
execution, and wish to allow limited execution services even when the DB is
unavailable. The nature of the limited services will be decided by
prototyping.

QUESTION: Besides being a service, should this be a DB the user can read from
directly? write to directly? Will this database be shared concurrently. If
it is, what concurrency control services are needed?

5 M.
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9.3.6.3 Save Named Context

U Definition: The state of a context is a set of bindings between names and
values.

.'..Function: When a user requests the service, save the current state of the
context on a permanent storage device under a name by which the user can refer

to it.

SOperational Requirements: Must have access to a checkpoint preservation
Sserver (remote file system, local hard disc, other?)

Performance Requirements: The named context must be saved within [one
minute. _

Interface:

INPUT SOURCE INTENT
u-select signal user Signals that the user wants to save the

context (s)he is currently in. Trig-
gers saving.

{c select signal other context Signals that a context wants to save
itself. Triggers saving. The need for

-" this service will be determined by
prototyping. }contextname user or other a name by which the saved context can

context be referenced

[NOTE: The execution context may initiate a save for checkpointing during
prototype exercise. The Execution Context, or Save Named Context, may provide
a name for the checkpoint. Therefore "context-name" may be an input or an
output. j

" OUTPUT DESTINATION INTENT
* error indication screen {and/or indication that target context cannot

audiol be saved. ".

Assumptions/Preconditions: (TBD -

Exceptional Conditions: Save Named Context may fail if the context preserva-
.. tion server is unavailable. In that case, Save Named Context produces an

error message. At the user's request, Save Named Context can keep a request
pending and retry it (1) periodically, or (2) when the user requests retry
explicitly. 1-:4

Remarks: This explicit preservation facility allows several users to share a
workstation conveniently (one user puts away the other's work, or a user puts
away his/her own work), and, most importantly, allows checkpointing during

" "prototype execution.
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-, Saving may be accomplished by active work on this context's part, or by
sending a message to the currently active context to save Itself. This will
be decided by prototyping. F

QUESTION: Should Save Named Context be able to save only the context from
which it is invoked, or should it be able to save contexts that are referred
to in some way?

*l. 9.3.6.4 Kill Named Context

Definition: The state of a context is a set of bindings between names and
values.

. Function: When a user requests the service, adjust the environment so that
' all objects from the context the user is currently working in are deleted.

Operational Requirements: (TDB}

Performance Requirements: The named context must be killed within [one
*. minutel. . 1

Interface: '.-

INPUT SOURCE INTENT
u select signal user Signals that the user wants to kill the

context (s)he is currently in. Trig-
gers killing.

{c select signal other context Signals that a context wants to kill
itself. Triggers killing. The need
for this service will be determined by
prototyping.}

P OUTPUT DESTINATION INTENT
error indication screen [and/or indication that target context cannot

audio} be killed.

" Assumptions/Preconditions: {TBD}

Exceptional Conditions: {TBD}

Remarks: Killing may be accomplished by active work on this context's part,
or by sending a message to the currently active context to kill itself. This
will be decided by prototyping.

9.3.6.5 Restore Named Context

Definition: The state of a context is a set of bindings between names and
values.
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Function: Restore the context named. This context now Joins the others in
the RaPIER environment.

Operational Requirements: Must have access to a checkpoint preservation
server (remote file system, local hard disc, other?)

Performance Requirements: The named context must be instantiated within [one
minute].

Interface:

INPUT SOURCE INTENT
- U select signal user Signals that the user wants to open a

context which has previously been
stored under some name. Triggers

• ,-acquisition of the name of the target
"': context [and possibly other informa-

tion, to be determined by prototyping}.
. . c select signal other context Signals that a context restoration is

needed. Triggers acquisition of the
name of the target context {and possi-

bly other information, to be determined
by prototypingi.

target context user or other Name [and information aboutl a context.
context Triggers Immediate restoration of that

context.

OUTPUT DESTINATION INTENT
- error indication screen (and/or indication that target context cannot

audio} be restored.

* Assumptions/Preconditions: The namespace is partitioned into RaPIER contexts.

.xceptional Conditions: Unknown context name received from user: this
facility will report that it has not switched contexts because it cannot find
a context with the name given, and provide the user with a means to choose ',.

another context or activity. In this case, the user will remain in the mode
of requesting context restoration until (s)he chooses to leave it.

Unknown context name received from another context: (this facility will send
an error message to the requesting context, and return control to that
context. The appropriateness of this behavior will be determined by
prototyping.

Restore Named Context may fail if the context exists but the context
preservation server is unavailable. "Restore Named Context" will report that.
The user or requesting context will remain at the point from which he/she/It
invoked Restore Named Context. At a user's request, Restore Named Context can
keep a request pending, and retry it (1) periodically, or (2) when the user
requests retry explicitly.
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Remarks: This facility is not a component of the modeless context switching
service mentioned in subsection 9.2.3. Modeless context switching assumes
there are many contexts in the environment suspended in the state in which

* they were abandoned, and allows a user to return to a selected context. This C

facility restores explicitly saved contexts. This explicit restoration facil--%
ity allows several users to share a workstation conveniently. C.

(NOTE: The execution context may put the system in a named construction
context for prototype modifications during exercise.} p

9.3.6.6 (!) Project Metrics

Function: Measure the cost of prototyping using RaPIER: compute the cost of
developing a prototype; compute "imaginary" rework costs assuming RaPIER is
not used; compute user satisfaction with delivered system whose requirements
were prototyped.

Operational Requirements: {TBD}

Performance Requirements: (TBDI }J

Interface:
User controlled: In order to establish the true cost of developing and using
prototypes, users must report work done on the prototype outside of the RaPIER -

system. The system developer must also include user satisfaction metrics.
Software Controlled: The software maintains running totals of "on-line" time
and other prototype development time. The software helps the user to -

determine the "what-if" costs of not using RaPIER. J

Assumptions/Preconditions: Users report non-RaPIER time accurately. Results
are statistical estimates, not absolute figures.

Exceptional Conditions: (TBDI

Remarks: Common wisdom claims that a critical advantage of rapid prototyping . .
is that it lowers costs associated with rework due to poorly defined
requirements. These costs may be incurred during development, resulting in
increased system costs, or after system release, resulting in poorly . * .

performing systems or contract renegotiations. Rapid prototyping also has a -

cost: the cost of planning, building and using prototypes. Another advantage -"

of prototyping is that systems developed using prototyping are more likely to .- -
be well-received by their users [BOEHM84]. -

While we believe these claims of increased productivity and quality are true,
they are not well-substantiated by quantitative data. It is difficult to -.

obtain Honeywell divisional committment without these data, or to demonstrate
ROI for this program to Honeywell or the DoD.
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Data gathered using these measures characterize how effective prototyping is
in cutting down total system development costs, not how effective RaPIER is
among the automated prototyping systems and prototyping techniques available.

The prototype results analysis includes a computation of what costs would have
been incurred to develop and enhance the final system if RaPIER had not been
used. There are at least two cost models that might be used to estimate these
costs: (1) a model which posits using other (ad hoc) prototyping techniques,
or (2) a model which supposes prototyping was not used at all.

Function points [ALBRECHT83] could be used as an initial basis for computing
costs of not using RaPIER; that is, calculate (new functions + changed
functions + f(system size)) to compute costs.

9.3.6.7 (t) RaPIER System Metrics

Function: Measure RaPIER system usage and effectiveness with the parameters
described in [CICU83]; for example, tool-usage counts, response-time, or -

keystrokes.

Operational Requirements: [TBDI

Performance Requirements: [TBD}

Interface:
User controlled: Ideally, RaPIER should include facilties to record and track
reasons for changes in the system which was prototyped. This would help us
improve RaPIER by determining which requirements were not adequately
identified/clarified by using RaPIER.
Software Controlled: The software maintains running totals of "on-line" time,
use of each tool, keystrokes, and so forth.

Assuptions/Preconditions: {TBDI

S'-Exceptional Conditions: [TBD}

Remarks: Common wisdom claims that a critical advantage of rapid prototyping
is that it lowers costs associated with rework due to poorly defined
requirements. These costs may be incurred during development, resulting in
increased system costs, or after system release, resulting in poorly
performing systems or contract renegotiations. Rapid prototyping also has a
cost: the cost of planning, building and using prototypes.

While we believe these claims of increased productivity and quality are true,
they are not well-substantiated by quantitative data. It is difficult to

obtain Honeywell divisional committment without these data, or to demonstrate
ROI for this program to Honeywell or the DoD.
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.,

Data gathered using these measures characterize how cost effective RaPIER is
at supporting prototype construction and execution, not how cost effective
prototyping is as a development technique. Data gathered using these metrics
can be useful in improving RaPIER itself.

9.3.7 Non-automated Methods

The first step of the prototyping process is Requirements Analysis to
determine which requirements to prototype. The RaPIER project will propose a
methodology for requirements analysis, but will not develop tools to automate
the method for lack of time, staff and money. Eventually we may study
approaches to automating the requirements analysis method we suggest. One of
the approaches may involve an expert system to analyse initial requirements.

User training involves automated services such as on-line help or Computer
Aided Instruction Courses, and off-line teaching, tutoring and mentoring. Any
development environment is best transferred to new users through a classroom
training course. We will develop such a course for RaPIER. Since this is an
experimental system that will be applied in pilot projects, we will also be
available as tutors and telephone consultants for RaPIER at least through the
fifth year of this project. Beyond that, the Computer Sciences Center will
need to transfer responsibility for RaPIER, including user training, to a
development group within Honeywell.

Documentation Includes on-line and off-line material. As much as possible, we
will put all RaPIER documentation on line, as Unix(1) does with its "man" ..

* pages. That same documentation will be available in hard copy.

9.3.8 Open Questions

These questions will be decided by prototyping RaPIER.

1. Is RaPIER a layer on top of the Symbolics environment, or a tool in the
Symbolics environment, co-equal with the other tools? This may be an
implementation question that should not be decided in the requirements.

2. Does RaPIER maintain one namespace for all RaPIER contexts (or for all
RaPIER contexts plus the rest of the Symbolics software tools) or is the
namespace partitioned by RaPIER contexts?

Other QUESTIONS are called out in the definitions of specific contexts which
will also be answered by prototyping.

(1) trademark of Bell Labs, Inc.
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9.4 DEMONSTRATION EVALUATION

The RAPIER project used the opportunity if presenting a status report to DoD
STARS personnel to evaluate the initial RaPIER requirements against the RaPIER
prototype built for that status report.

9.4.1 Introduction

The RaPIER demonstration, presented at the August 5, 1985 STARS status report,
:" .*. comprises a prototype/mockup of both the RaPIER system and the ASCLSS example

(subsection 8.4). The demonstration is part prototype and part mockup; the
prototype part of the demonstration helps us answer questions about RaPIER's
requirements; the mockup part exists solely for the demonstration purposes.
Figures 9-1 through 9-4 are pictures of the four major RaPIER contexts as they
were prototyped in August.

While developing this demonstration, we generated many RaPIER requirements
questions. In order to build the demonstration, we had to answer many of
these questions. Some of the answers were arbitrary; some were considered
carefully. Some were good decisions; others were not. This subsection
evaluates these decisions and suggests which should and should not be
incorporated into the updated RaPIER requirements. It considers only the
prototype part of the demonstration, and focuses on how wellthat part supportsa building of prototypes such as ASCLSS.

This subsection has three major parts: an evaluation of the RaPIER demonstra-
, i~ tion, a comparison of the RaPIER demonstration with the initial RaPIER
. .. requirements (see subsection 9.3), and a proposed approach to building the

next RaPIER prototype.

9.4.2 Demonstration Evaluation

There are two overall questions we want to answer with RaPIER prototypes:

, A. Is our understanding of the prototyping task complete?
B. Does the RaPIER prototype engineering environment support the task of

prototyping as we understand it?

The next six subsections answer these questions:

1. What tasks are needed for prototyping?
2. What functions are needed to support each task?
3. How are the functions be partitioned onto windows?
4. What windows are visible simultaneously?

* 5. Does each window support its task?
6. Miscellaneous.
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9.4.2.1 What tasks are needed for prototyping?

In the context of the demonstration, the question is:",

o Does the demonstration script (subsection 8.4.6) describe the task(s)
required to build a prototype such as ASCLSS?

The script, which is based on the high level prototyping tasks of the
prototyping methodology, describes a particular way to build a specific
prototype, but does not show that we understand prototyping in general. The
task of building software in general and prototypes in particular is complex
and was difficult to capture in a scenario that was intended for a short
demonstration.

The script ignores some important parts of the prototyping process. Experi- ' .
* ence has shown us that, in order to find software components, we need access

to experts (possibly ourselves) who have built similar things in similar
environments. We hope the need for experts will vanish with a means to query
and browse through software component specifications. Other tasks that are
not shown in the script are configuration management and analysis of collected
results.

.Because the script compresses the entire prototyping process into an hour-long
demonstration, it distorts the amount of time each task takes. Because the
script was intended to lead the audience through the process, it did not
mention "side tracks" like configuration managment. " -

9.4.2.2 What functions are needed to support each task?

In the context of the demonstration, the question is:

o Do the functions in the demonstration support the tasks in prototyping as
we understand them today?

The high level functions required to support the task of prototyping are
present in the part of RaPIER that we prototyped. Configuration managment and
a means of gluing components together (i.e., PSDL) are missing. The functions
in the demonstration are based on the initial requirements described in . 1
subsection 9.3.

A risk is that the functions necessary for a small environment (that is, one
with few components, and few ways of doing things) are inadequate for a larger
environment. .

The need for the capability of modifying translated PSDL is an open question.
It SHOULD not be neccessary for the developer to know about or modify the
prototype's "object" code, that is, an Ada program. However, it may be

* necessary to have these capabilities, especially during the early stages of
RaPIER development.
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9.4.2.3 How are functions partitioned onto windows?

In the context of the demonstration, the question is:

o Are the functions required to do prototyping partitioned into windows in a
way that does not require switching windows for "simple" operations?

The functions seem to be partitioned into windows in a way that does not
require excessive switching among windows; however, the prototype does not
have enough functionality to answer this question well.

- There was a lot of switching among windows in the demonstration. This was
. acceptable since the demonstration compressed the whole prototyping process

into an hour. In practice, there may be the same amount of switching among
windows, but done over days or weeks. We will find out through experience.

- To minimize switching among windows if that is needed, the set of functions
available in each window should be extensible.

1W Until the amount of screen space approximates the amount of available desk
space, the amount of switching will be more for an automated system than for
paper and pencil and therefore may seem like too much.

.. : ..

9.4.2.4 What windows are visible simultaneously?

IhIn the context of the demonstration, the questions are:
o Is the organization of contexts as screens with all windows visible

appropriate?
o Is it appropriate to always have the RaPIER context menu visible?
o Is the set of windows in each context appropriate?

U o Do the set of contexts, and the set of windows in each context minimize
switching among contexts?

It appears desirable for all windows in a context to be visible simultaneous-
ly; however, constraints known only by the RaPIER user make it necessary to
allow the user to choose which windows are visible. Some of these constraints
are performance, the need to see information in a window and the need for more

"* windows to accomplish some task. At a minimum, all windows in a context need
not be visible; however, they MUST be easily selectable.

It appears appropriate for the RaPIER context menu always to be visible;
:- -- however, due to limited screen space, another method of selecting contexts may

- be better.

-. The set of windows in each context seems appropriate. Some windows may need

several instances or multiple buffers. The set of windows in each context
should be modifiable by the user.
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The windows in a given context are used in conjunction with one another during
part of the prototyping process. The organization of windows into contexts
minimizes the switching among contexts at the cost of small window sizes.

9.4.2.5 Does each window support its task? .'

In the context of the demonstration, the questions are:

o Do the functions provided in each window support the window's function?
o Does the size and shape of each window support its function?

*The prototype is not detailed enough to answer these questions well. it
* appears that the functions in each window will support the window's function.

In general, the windows are too small and there are too many windows on the
screen. The user does not now have control over which windows that are -

visible and their size.

9.4.2.6 Miscellaneous

In the context of the demonstration, the questions are:

o Is the use of the mouse and keyboard appropriate?
o What kind of notification and status windows should be available? .
o What help facilities (on-line help and documentation) are needed?

* The prototype is not detailed enough to answer these questions well.

Notification and status windows were not addressed in the demonstration.
* Notification and status windows are needed in a multi-processes environment.

On-line help facilities and documentation are not addressed by the demonstra-
tion.

* 9.4.3 Comparison to Initial Requirements -

Here is a brief comparison between the initial requirements and the prototype
demonstrated. In general, the demonstration is consistant with the initial
requirements.

Requirements Demonstration

Contexts:
RaPIER Top Level Implemented as a window frame
Context Opener Implemented as RaPIER Menu

.4Construction Implemented as a window frame
Execution Implemented as a window frame
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Software Base Implemented as a window frame
User Help and Training Not part of the demonstration.
Services Provided by Symbolics -

Support functions:
Construction Database Not part of the demonstration.

Implemented as an functionless
window.

Execution Database Not part of the demonstration.
Implemented as an functionless
window.

Save Named Context Meaning unclear
Kill Named Context Meaning unclear
Restore Named Context Meaning unclear

The meaning of the support functions for saving, killing and restoring a
context were unclear and therefore were not implemented.

9.4.3.1 Approach to Building the Next RaPIER Prototype

This subsection suggests approaches to developing the RaIPER requirements.
The approach extends our understanding so that we can ask better questions and
better answer the questions asked in subsections 9.3.2.1 through 9.3.2.6. The
suggested approaches are:

1. Use the Symbolics development tools to develop a prototype (for example,
the IDA prototype discussed in section 8) while taking notes on what we
do. The notes should include comments about the methodology used to
construct the prototype, reusability, software classification and
browsing, and gluing components together.

This information will help answer the questions in subsections 9.3.2.1 and
9.3.2.2.

2. Make the functions available in each window easily extensible. Let needs
while developing prototypes such as IDA drive how the functions are
extended.

This information will help answer the questions in subsections 9.3.2.3 and
9.3.2.6.

3. Do not bind windows to contexts yet. Implement the prototype of the
RaPIER prototype engineering environment so that the windows in each
context can be changed easily. Some advantages of this are:

o Each window may have a full screen to work with.
o Users can configure their environments to their needs.
o It may minimize the switching among windows because users will choose
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only the windows they will work on for a long time.
o It will be easier to add or delete windows from contexts while

constructing RaPIER.

This information will help answer the questions in subsections 9.3.2.4 and
9.3.2.5.

9.5 FUTURE WORK

We will continue developing the RaPIER environment as a series of prototypes
and involving potential RaPIER users in evaluating them. In the coming year,
we plan to update the initial requirements with the knowledge gained from our
first environment prototype, build a prototype of the updated requirements, -

and demonstrate this environment to potential users. We also plan to design
the RaPIER system and build design prototypes of critical parts of the RaPIER
system.

9.6 END NOTES

9.6.1 OBJECTIVES FOR THE RAPIER PROJECT AND THE RAPIER SYSTEM

The RaPIER Project will I

1. define a methodology for prototyping to identify end-user requirements;

2. implement a prototype of a system that supports this methodology;

3. transfer this technology, as a prototype, to the defined setting (see
subsection 9.6.4).

The RaPIER System will

1. automate prototyping for the timely identification of end-user require-
ments,

2. support prototyping of ECSs in Ada,

3. model a theory of prototype construction and execution,

4. support prototype construction and execution In the defined setting (see
subsection 9.6.4),

5. support prototype construction and execution for the defined users (see
subsection 9.6.3),

6. be extensible; the design must accomodate enhancements,
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7. be transferrable; that is, meet the expressed need, be documented, be
robust, be accompanied by training materials, and be supported by
consulting services from its builders,

* *. 8. make it easy to reuse Ada software,

9. be a tool. It may be used along with other tools, and should be
compatible, if not integrable, with those other tools.

9.6.2 Non-Objectives for the RaPIER Project and System

These lists make RaPIER's non-objectives explicit. We will be pleased if we
achieve some of our non-objectives as objectives, but we will not make

* deliberate design decisions in pursuit of non-objectives.

The RaPIER system is not intended for:

1. application generation by programmers or end-users;

* , 2. prototype construction by end-users;

* 3. developing marketable, or deliverable, products;

4. incrementally building systems that evolve from prototypes into final

products;

- 5. developing functionally complete software systems;

6. creating prototypes with critical resource or timing constraints. Note V.

that a prototype may simulate resource or timing constraints.

7. lowering software development costs. Its objective is to improve quality,
thereby lowering total life cycle cost.

8. prototyping systems that will be implemented in an arbitrary language.
The system will support Ada concepts.

&L 
°

9. executing prototypes on hardware and operating system platforms that are
too small, too "kludgy," or don't offer the services and facilities
described in the RaPIER requirements;

10. being used in isolation. We assume the system will be able to reach out
to remote software repositories;

11. developing portable (as opposed to reusable) code.

• .The RaPIER system will not:* -o.

1. be based on executable specifications (e.g, PASILey);

Honeywell Computer Sciences Center 271

. . . . . . . .

• ' o° . °o . , .. * *- . . . . , ~ * . ... A i * - - ° , ° o , - . - . .- ,- - ° . - • o ° • ° °



..........- . .. - - - C~.~ ' -.- -- - ~ - -

Final Scientific Report: RaPIER Project (Contract No. N00014-85-C-0666) - .:

2. require a guru to use it.

The RaPIER project is not:
6 56

1. developing a Honeywell hardware/software product for sale by Honeywell 0.,

Information Systems;

2. developing what can be acquired;

3. developing database or reusability technology or tools other than what is
needed for prototyping.

9.6.3 The Typical RaPIER User

RaPIER's major components are a construction and an execution environment. .
This section describes the construction environment's user, unless otherwise -"

noted. The execution environment's user may be less of an expert.

The typical RaPIER construction environment user:

1. is a software developer and computer scientist. Systems engineers and
customer subject matter experts may be secondary users.

2. has a B.S. (or good B.A.) in computer science (or the equivalent -

knowledge);

3. has at least three years of software development experience using a , -

high-level language;

4. has used Ada or will learn Ada prior to using RaPIER; V.

5. appreciates tools, will learn RaPIER's tools and be motivated to exploit

them, can/will become a RaPIER skilled user;

6. deals with requirements;

T . deals with new products;

8. is part of the contractor's staff;

9. is not a casual user. This implies that RaPIER will not support the user o
who doesn't build familiarity and facility with the sytem over time.
RaPIER will instead require the user to build up facility with the system,
exploit on-line help and documentation, and off-line documentation. '" '

10. has skill/experience in designing software, implying that (s)he will plan
the prototype and provide an architecture for it instead of just hacking
it together. The plan and architecture are what makes reusing software
profitable.
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" 11. has some knowledge of the application area, so (s)he can interpret the
user's initial requirements in a useful way. 

, .P

9.6.4 The RaPIER Setting

-. This list states explicitly the characteristics of the setting in which RaPIER

will be used. RaPIER will be used in:

-. 1. a professional, not educational or hobby setting. This implies, for

example, that methods must be developed to use RaPIER's results appropri-
ately, mapping information gained from the prototyping exercise into an
engineering response to initial requirements, not just concluding the
exercise.

2. a production, not research setting. This implies that RaPIER must be
reasonably robust, reasonably "useable," and adequately documented. This
also implies a certain level of user expectations for functional
capabilities such as mail, network links, and text processing.

3. a setting in which the product RaPIER prototypes will most likely be
developed in Ada.

4. a large-project setting, where many people work together over long periods
of time. This implies the need for the "usual" development environment
tools - configuration management, data management, and so forth. The

U Itypical Honeywell Training and Control Systems Operation's project, for
example, is about 20 person years.

5. a system development, not just software development setting. This may
imply that we will have to provide methods for modeling hardware in
software, or develop a prototype construction methodology that does not

. differentiate between hardware and software. This may also imply that
some users will be system engineers.

6. a resource starved setting, in which there will never be enough time or
- money for prototyping. This implies a need for as many prebuilt,

reasonable complete prototyping as possible in the software base, and
implies that people may want to use the prototype as an initial product.
(We hope that, as prototyping begins to pay off, managers and developers
may be willing to devote more resources to it.)

7. an embedded system development setting.

8. a for-profit industrial setting. This implies that prototyping must be
:.. cost effective with respect to the "risked-cost" of the requirements unde
S-investigation. That is, if the potential cost of making an error in some

set of requirements is $200,000 with a 10% liklehood that the error will
*" be made, then the prototype may cost $20,00 if it drives the risk to zero,

V $10,000 if it drives the risk to 5% (half the original risk), and so
forth.
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9.6.5 Workstations

Here are some benefits of having individual workstations for the members of a bl
prototyping (or development) project:

1. Availability/Reliability:-- Progress is not tied to a single mainframe or .
mini. If one workstation is down, a developer can use another, getting
files from the file server. If the file server is down, a developer can
do work in the local file space until the large capacity file server is j j
restored.

2. Availability/long lived sessions:-- A personal workstation is like a desk. - "

It belongs to one person and is an environment that stays the same as long
as that person wants it to. Work sessions that generate many files, and -
many bindings, do not disappear at log-off. Therefore a developer does
not have to spend time restoring an environment (with the possibility of
mistakes) the next time she/he wants to work on the same problem. This
increases developer productivity.

* Here are some additional benefits of the Symbolics workstation: "

1. Access to colleagues and remote services through a network:-- The .-
Symbolics's normal mode of operation is as a node on a network. This mode
provides all the benefits of an individual workstation, plus access to
remote services such as mail, and other computers.

2. Power:-- The Symbolics has: J
o enough memory to support dynamism, and exploratory programming
o a variety of I/O devices - at least mouse and keyboard input, screen,

file and hard copy output. It has serial interface ports that could be .
used to provide lightpen or drawing pad input,hard copy graphical
output, or input from and output to devices that are peculiar to a
system being prototyped.

o Reusable components:-- The Symbolics system is composed to hundreds of
Lisp flavors. These flavors are reusable packages that can be used to
o construct RaPIER,
o learn the characteristics of reusable software, and
o learn how to build with reusable software.

3. Sophistication:-- The Symbolics system is one of the most advanced
software development environments on the market. This project can learn
from it, thus improving RaPIER. The project can use large parts of it in
the RaPIER environment, thus improving the project's productivity.

9.6.6 Prototyping as Exploratory Programming

Exploratory programming [TEITELMAN84] means trying alternatives. It does not

" mean hacking; it does not mean debugging. The exploratory programming life
cycle recommends designing and implementing in tandem instead of freezing a
design and then implementing. The goal of exploratory programming in general.* .i
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is to develop a program to accomplish some task which incorporates the best
design decisions of the alternatives tried. Prototyping to identify end user
requirements is quintessential exploratory programming: the only goal of
prototyping is to test alternatives.

Engineering prototypes (breadboards and brassboards) are nearly complete
models of physical objects. They are built to demonstrate concepts and only
secondarily to be changed until the right concept is discovered. Software
prototypes, on the other hand, are malleable objects that can be changed
often, and at low cost if the prototype development system is designed to
facilitate change and the prototype is built to be adaptable.

The RaPIER project views software prototyping as the incremental development
of a final prototype which may be discarded once system/software requirements
are clarified. This kind of prototyping process begins with the incremental
development of an initial version of the prototype, done by prototypers
exploring their understanding of the user's initial requirements. The final
prototype is incrementally developed also, by making changes in response to
comments and criticism from application specialists and eventual end users.

bi The whole point of prototyping to identify end-user requirements is to change
the prototype often in response to user comments.

.lS
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Financial Summary and Related Efforts

SECTION 10

FINANCIAL SUMMARY AND RELATED EFFORTS

This section describes actual spending, in calendar year 1985, for STARS and
for Honeywell parallel efforts in this program. The second part of the
section describes some technical efforts within Honeywell which are related
and of potential interest to STARS.

to 10.1 FINANCIAL SUMMARY

.: STARS funded tasks:

Task Spending

H1.3 - Reusability $35980.75
H1.5 - Demonstration 68946.48
H1.6 - Methodology 23831.63
H1.8 - Planning/Review 23263.11

Total STARS $152021.97

I*Honeywell parallel funding: $202868.00
Honeywell cost-share $ 77851.94

' - **Total - Honeywell $280719.94

Total 1985 Program $432741.91

10.2 RELATED HONEYWELL EFFORTS

10.2.1 SOFTWARE DEVELOPMENT ENVIRONMENTS: SDE 1.0

The Software Development Environment (SDE 1.0) is an integrated environment
for software development providing support for project planning, visibility
into and control of the development process. It supports all members of a
software development organization including managers, designers, implementors
and maintainers. It provides a common information base which allows all
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members of the organization to work together in one consolidated environment.
In addition, SDE 1.0 can support Honeywell customers and interactions between
divisions.

SDE 1.0 offers managers increased support for software development in the
areas of project planning (emphasizing planning a project before starting ..

one), configuration management, monitoring of project activities, product -

status, metrics collection (i.e., measurement of the productivity of the
development effort and quality of its software product, on one project or .-

across multiple projects); a general ability to specify an overall methodology
of what will be produced on a project and how it will be produced, and support
for transition between lifecycle phases (e.g., design must be done before
coding begins).

SDE 1.0 provides designers and implementors with organized information they
need to perform project activities (e.g., inputs, outputs, related -

documentation/activities), the capability to use a wide range of development
tools (e.g., communication, text editing, compilation tools), the ability to -

manage revisions to documentation/source code and maintain change histories,
and data to back up the current status of development.

SDE 1.0 provides software maintainers/Honeywell customers with an effective
approach to ease the transition into and execution of the maintenance phase of
the software life cycle after product development. It can provide a complete
context/project history (e.g., every memo, bug fix, piece of source code,
version, and so forth that was created during development) to maintenance I
personnel. It can also help assess the impact of making changes to the
software product, and could be used to assess contract peformance/quality of "
delivered software.

Finally, SDE 1.0 is an excellent vehicle for technology transfer because it
can be tailored to support development of specific applications. One
Honeywell division that has expertise to do software development in a
particular area c-n configure SDE 1.0 to support its specific methods and
tools.

In general, SDE 1.0 provides software development organizations with support
to do the kinds of things they've always done, but in a more orderly, coherent - -
and consistent manner.

The architecture consists of a data management system, a set of integrated
environment functions and an encapsulation interface.

The data management system (Software Lifecycle Information Manager) is based UJ
on a schema that is specific to software development. As opposed to
traditional development systems which provide users with 'files' and .
'directories', SDE 1.0 provides 'projects', activities', 'tools', and .

'information objects.' Each of these objects has a set of associated attri-
butes and a set of relationships with other objects in the system. '

Functions provides by SDE 1.0 fall into six categories:
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o Encapsulation presents a unified functional environment to the user and
allows the use of non-SDE tools.

o Project management is used to set up a project in the SDE environment
through the specification of activities; it also provides project

* scheduling.
o Object management is used to add, delete, modify, and print information in

the database. I
o Configuration management is used to develop software baselines and provide

a UNIX- (trademark) like 'make' function. It was not implemented for the
prototype SDE 1.0.

o Revision management provides automatic revision control of textual informa-
tion objects.J

o Metrics management collects and analyzes data on software development
activities, tool usage, and information objects.

Portability was given major consideration during the implementation of SDE
1.0. The current implementation of SDE 1.0 is written in the C programming
languauge using a compiler developed at the University of Waterloo for the
Honeywell DPS6 minicomputer. The implementor also observed rigid coding,
documentation, and testing standards. Therefore, with minor modifications and
an encapsulation hook, SDE 1.0 is portable to any system with a C compiler and
a hierarchical file system.

* 10.2.2 Prototype Reusable Software Repository (RSR)

Work in 1985 to design and develop a prototype Reusable Software Repository4
served two major purposes. First, it provided insight into a "new" tool for
increasing software development productivity., Second, together with the SDE
1.0, it provided us with another step toward our goal of a prototype APSE
since a tool supporting reusability of Ada software is a key APSE tool.

RSR requirements were based in part on STARS Application Area reusable Ada
software library requirements as well as previous and/or existing Honeywell
software repository efforts. These requirements included the ability to store

* . reusable software and Information about the software, Honeywell-wide accessi-
bility, and the ability to retrieve, submit, and maintain software inventory
items. The RSR conceptual design depicts these functional requirements. It

- provides a menu-oriented user interface to inventory item retrieval, submis- L
sion, and maintenance functions. Three queues, a comment/deficiency log,
inventory item, and bulletin board separate repository submission and mainte-

*nance (insertion) functions to protect the integrety of repository data.
Detailed design of the repository was done in an Ada programming design

* -. language using object-oriented design techniques.

The prototype implementation of the repository intself uses the INGRES
database management system on VAX VMS. It is coded in the C language and

* makes use of the C interface to INGRES. The implementation supports a subset
of overall repository functionality including the ability to browse the
repository (categories, inventory items), display inventory item by keyword,

* display general information about a specific inventory item, view inventory
item long description, view actual inventory items, submit inventory item
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.

insert inventory item, delete inventory item, copy inventory item, create
category, delete category, and read bulletin board. The implementation is a
foundation on which Ada-specific classification schemes for software %4
repositories can be prototyped.

A demonstration of the RSR used sample Ada modules from the SINTEL Ada ..

repository.

10.2.3 User Interface Prototyper

The objective of this project is to develop and demonstrate a software package
which will assist design engineers and human factors specialists in the rapid
design and implementation of user interface front panels, in order to reduce
the time required to develop and test user interface prototypes and thus the
cost of user interface design.

The rapid prototyper was developed in an object-oriented programming language
(Smalltalk80) and it contains an inventory of functional and graphical
representations of generic man-machine interface (MMI) components which may be
linked together to simulate the behavior of a particular device. A graphics
editor was developed to facilitate user expansion of the pictorial component

"- inventory. The rapid prototyper's user interface is graphical in nature and
*:. incorporates menu-based and form-filling approaches.

In a successful proof of the concept, a cross section of component types was
prototyped using Smalltalk-80 on a Tektronix 4404. In parallel with this J [
activity, Honeywell divisions were surveyed to determine the types of MMI•
components in current or anticipated use and the processes typically used in
doing MI design. The functional aspects of 12 basic and 7 operational
components were implemented as well as the capability for the user to define
composite components.
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